Deep learning-assisted survival prognosis in renal cancer: A CT scan-based personalized approach

被引:0
|
作者
Mahootiha, Maryamalsadat [1 ,2 ]
Qadir, Hemin Ali [1 ]
Aghayan, Davit [1 ]
Fretland, Asmund Avdem [1 ]
von Gohren Edwin, Bjorn [1 ,2 ]
Balasingham, Ilangko [1 ,3 ]
机构
[1] Oslo Univ Hosp, Intervent Ctr, N-0372 Oslo, Norway
[2] Univ Oslo, Fac Med, N-0372 Oslo, Norway
[3] Norwegian Univ Sci & Technol, Dept Elect Syst, Trondheim, Norway
关键词
Cancer prognosis; Renal cell carcinoma; Kidney tumor grading; Survival analysis; Deep learning; Personalized prognosis; Imaging biomarkers; Radiomics; CELL CARCINOMA; MODEL; SYSTEM;
D O I
10.1016/j.heliyon.2024.e24374
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a deep learning (DL) approach for predicting survival probabilities of renal cancer patients based solely on preoperative CT imaging. The proposed approach consists of two networks: a classifier- and a survival- network. The classifier attempts to extract features from 3D CT scans to predict the ISUP grade of Renal cell carcinoma (RCC) tumors, as defined by the International Society of Urological Pathology (ISUP). Our classifier is a 3D convolutional neural network to avoid losing crucial information on the interconnection of slides in 3D images. We employ multiple procedures, including image augmentation, preprocessing, and concatenation, to improve the performance of the classifier. Given the strong correlation between ISUP grading and renal cancer prognosis in the clinical context, we use the ISUP grading features extracted by the classifier as the input to the survival network. By leveraging this clinical association and the classifier network, we are able to model our survival analysis using a simple DL -based network. We adopt a discrete LogisticHazard-based loss to extract intrinsic survival characteristics of RCC tumors from CT images. This allows us to build a completely parametric survival model that varies with patients' tumor characteristics and predicts non -proportional survival probability curves for different patients. Our results demonstrated that the proposed method could predict the future course of renal cancer with reasonable accuracy from the CT scans. The proposed method obtained an average concordance index of 0.72, an integrated Brier score of 0.15, and an area under the curve value of 0.71 on the test cohorts.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Breast Cancer Survival Prediction Modeling Based on Genomic Data: An Improved Prognosis-Driven Deep Learning Approach
    Mahmoud, Amena
    Alhussein, Musaed
    Aurangzeb, Khursheed
    Takaoka, Eiko
    IEEE ACCESS, 2024, 12 : 119502 - 119519
  • [22] Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
    Rauch, P.
    Stefanits, H.
    Aichholzer, M.
    Serra, C.
    Vorhauer, D.
    Wagner, H.
    Boehm, P.
    Hartl, S.
    Manakov, I.
    Sonnberger, M.
    Buckwar, E.
    Ruiz-Navarro, F.
    Heil, K.
    Gloeckel, M.
    Oberndorfer, J.
    Spiegl-Kreinecker, S.
    Aufschnaiter-Hiessboeck, K.
    Weis, S.
    Leibetseder, A.
    Thomae, W.
    Hauser, T.
    Auer, C.
    Katletz, S.
    Gruber, A.
    Gmeiner, M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [23] Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
    P. Rauch
    H. Stefanits
    M. Aichholzer
    C. Serra
    D. Vorhauer
    H. Wagner
    P. Böhm
    S. Hartl
    I. Manakov
    M. Sonnberger
    E. Buckwar
    F. Ruiz-Navarro
    K. Heil
    M. Glöckel
    J. Oberndorfer
    S. Spiegl-Kreinecker
    K. Aufschnaiter-Hiessböck
    S. Weis
    A. Leibetseder
    W. Thomae
    T. Hauser
    C. Auer
    S. Katletz
    A. Gruber
    M. Gmeiner
    Scientific Reports, 13
  • [24] Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency
    Trimpl, Michael J.
    Campbell, Sorcha
    Panakis, Niki
    Ajzensztejn, Daniel
    Burke, Emma
    Ellis, Shawn
    Johnstone, Philippa
    Doyle, Emma
    Towers, Rebecca
    Higgins, Geoffrey
    Bernard, Claire
    Hustinx, Roland
    Vallis, Katherine A.
    Stride, Eleanor P. J.
    Gooding, Mark J.
    RADIOTHERAPY AND ONCOLOGY, 2024, 200
  • [25] Federated Learning-Assisted Coati Deep Learning-Based Model for Intrusion Detection in MANET
    Hussain, S. Faizal Mukthar
    Fathima, S. M. H. Sithi Shameem
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [26] Deep learning-assisted colonoscopy images for prediction of mismatch repair deficiency in colorectal cancer
    Cai, Yue
    Chen, Xijie
    Chen, Junguo
    Liao, James
    Han, Ming
    Lin, Dezheng
    Hong, Xiaoling
    Hu, Huabin
    Hu, Jiancong
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2025, 39 (02): : 859 - 867
  • [27] A PET/CT image-based deep learning approach for precise survival prognosis and clinical management of treatments in patients with esophageal carcinoma
    Liu, J-H.
    Song, J.
    ANNALS OF ONCOLOGY, 2024, 35 : S169 - S169
  • [28] Testing and Tuning of RRAM-Based DNNs: A Machine Learning-Assisted Approach
    Ma, Kwondo
    Saha, Anurup
    Komarraju, Suhasini
    Amarnath, Chandramouli
    Chatterjee, Abhijit
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 688 - 692
  • [29] Intelligent Crack Detection and Quantification in the Concrete Bridge: A Deep Learning-Assisted Image Processing Approach
    Yu, Licun
    He, Shuanhai
    Liu, Xiaosong
    Jiang, Shuqing
    Xiang, Shuiying
    ADVANCES IN CIVIL ENGINEERING, 2022, 2022
  • [30] A Novel Deep Learning-Assisted SVD-based Method for Medical Image Watermarking
    Kanwal, Saima
    Tao, Feng
    Taj, Rizwan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 1448 - 1458