A High-Energy Tellurium Redox-Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries

被引:9
|
作者
Du, Jingwei [1 ]
Zhao, Yirong [2 ]
Chu, Xingyuan [1 ]
Wang, Gang [1 ,3 ]
Neumann, Christof [4 ,5 ]
Xu, Hao [1 ,6 ]
Li, Xiaodong [7 ]
Loeffler, Markus [8 ]
Lu, Qiongqiong [9 ]
Zhang, Jiaxu [1 ]
Li, Dongqi [1 ]
Zou, Jianxin [6 ]
Mikhailova, Daria [2 ]
Turchanin, Andrey [4 ,5 ]
Feng, Xinliang [1 ,7 ]
Yu, Minghao [1 ]
机构
[1] Tech Univ Dresden, Fac Chem & Food Chem, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[2] Leibniz Inst Solid State & Mat Res IFW Dresden eV, Inst Mat Chem, Helmholtzstr 20, D-01069 Dresden, Germany
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Fuel Cells Electrolyzers Technol Zheji, Ningbo 315201, Peoples R China
[4] Friedrich Schiller Univ Jena, Inst Phys Chem, Lessigstr 10, D-07743 Jena, Germany
[5] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Lessigstr 10, D-07743 Jena, Germany
[6] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Sch Mat Sci & Engn, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
[7] Max Planck Inst Microstruct Phys, Dept Synthet Mat & Funct Devices, Weinberg 2, D-06120 Halle, Germany
[8] Tech Univ Dresden, Dresden Ctr Nanoanal DCN, Ctr Adv Elect Dresden Cfaed, Helmholtzstr 18, D-01069 Dresden, Germany
[9] Henan Acad Sci, Inst Mat, Zhengzhou 450046, Peoples R China
关键词
aqueous zinc batteries; conversion electrochemistry; redox-amphoteric; tellurium; MOLECULAR-DYNAMICS; ION BATTERIES;
D O I
10.1002/adma.202313621
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe-1 and a high energy density of 1028.0 Wh kgTe-1. A highly concentrated electrolyte (30 mol kg-1 ZnCl2) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H2O reactivity and inhibits undesirable hydrolysis of the Te4+ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te2-/Te0/Te4+ conversion with TeCl4 is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond. A tellurium redox-amphoteric conversion cathode chemistry is demonstrated for aqueous zinc batteries with a highly concentrated ZnCl2 electrolyte, achieving a specific capacity of 1223.9 mAh gTe-1 and an outstanding energy density of 1028.0 Wh kgTe-1. The reversible six-electron Te2-/Te0/Te4+ conversion is disclosed with TeCl4 as the fully charged product and ZnTe as the fully discharged product. image
引用
收藏
页数:10
相关论文
共 50 条
  • [21] NEW CATHODE MATERIAL FOR HIGH-ENERGY LITHIUM BATTERIES
    NEVETT, BA
    ELECTRONICS & WIRELESS WORLD, 1987, 93 (1616): : 571 - 571
  • [22] Agar-Activated Carbon Cathode with Optimized Redox Electrolyte for High-Energy and Stable Aqueous Zinc Hybrid Battery-Capacitor
    Selvaraj, Balamurugan
    Seo, Sehong
    Kim, Sungjin
    Zikri, Adi Tiara
    Lee, Seunggyeong
    Mathew, Vinod
    Sambandam, Balaji
    Kim, Jaekook
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (18): : 8173 - 8184
  • [23] Multi-redox Molecule for High-Energy Redox Flow Batteries
    Kwon G.
    Lee S.
    Hwang J.
    Shim H.-S.
    Lee B.
    Lee M.H.
    Ko Y.
    Jung S.-K.
    Ku K.
    Hong J.
    Kang K.
    Kang, Kisuk (matlgen1@snu.ac.kr), 1771, Cell Press (02): : 1771 - 1782
  • [24] Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries
    Ye, Xiaolin
    Han, Daliang
    Jiang, Guangyi
    Cui, Changjun
    Guo, Yong
    Wang, Yaogang
    Zhang, Zhicheng
    Weng, Zhe
    Yang, Quan-Hong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (03) : 1016 - 1023
  • [25] Multi-redox Molecule for High-Energy Redox Flow Batteries
    Kwon, Giyun
    Lee, Sechan
    Hwang, Jinyeon
    Shim, Hyun-Soo
    Lee, Byungju
    Lee, Myeong Hwan
    Ko, Youngmin
    Jung, Sung-Kyun
    Ku, Kyojin
    Hong, Jihyun
    Kang, Kisuk
    JOULE, 2018, 2 (09) : 1771 - 1782
  • [26] The ultrasonic-assisted growth of porous cobalt/nickel composite hydroxides as a super high-energy and stable cathode for aqueous zinc batteries
    Cheng, Yafei
    Zheng, Dezhou
    Xu, Wei
    Geng, Hongbo
    Lu, Xihong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (34) : 17741 - 17746
  • [27] Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries
    Li, Xiaotong
    Yao, Yuan
    Liu, Chenxi
    Jia, Xin
    Jian, Jiahuang
    Guo, Bao
    Lu, Songtao
    Qin, Wei
    Wang, Qing
    Wu, Xiaohong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)
  • [28] Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction
    Liang, Guojin
    Liang, Bochun
    Chen, Ao
    Zhu, Jiaxiong
    Li, Qing
    Huang, Zhaodong
    Li, Xinliang
    Wang, Ying
    Wang, Xiaoqi
    Xiong, Bo
    Jin, Xu
    Bai, Shengchi
    Fan, Jun
    Zhi, Chunyi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [29] Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction
    Guojin Liang
    Bochun Liang
    Ao Chen
    Jiaxiong Zhu
    Qing Li
    Zhaodong Huang
    Xinliang Li
    Ying Wang
    Xiaoqi Wang
    Bo Xiong
    Xu Jin
    Shengchi Bai
    Jun Fan
    Chunyi Zhi
    Nature Communications, 14
  • [30] Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries
    Wang, Xiao
    Zhang, Zhengchunyu
    Xi, Baojuan
    Chen, Weihua
    Jia, Yuxi
    Feng, Jinkui
    Xiong, Shenglin
    ACS NANO, 2021, 15 (06) : 9244 - 9272