A Multichannel Convolutional Decoding Network for Graph Classification

被引:8
|
作者
Guang, Mingjian [1 ,2 ]
Yan, Chungang [1 ,2 ]
Xu, Yuhua [1 ,2 ]
Wang, Junli [1 ,2 ]
Jiang, Changjun [1 ,2 ]
机构
[1] Tongji Univ, Key Lab Embedded Syst & Serv Comp, Minist Educ, Shanghai 201804, Peoples R China
[2] Tongji Univ, Natl Prov Minist Joint Collaborat Innovat Ctr Fina, Shanghai 201804, Peoples R China
关键词
Decoding; Convolution; Task analysis; Convolutional neural networks; Data mining; Training; Computational complexity; Global-to-local; graph classification; graph convolutional network (GCN); regularization;
D O I
10.1109/TNNLS.2023.3266243
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) have shown superior performance on graph classification tasks, and their structure can be considered as an encoder-decoder pair. However, most existing methods lack the comprehensive consideration of global and local in decoding, resulting in the loss of global information or ignoring some local information of large graphs. And the commonly used cross-entropy loss is essentially an encoder-decoder global loss, which cannot supervise the training states of the two local components (encoder and decoder). We propose a multichannel convolutional decoding network (MCCD) to solve the above-mentioned problems. MCCD first adopts a multichannel GCN encoder, which has better generalization than a single-channel GCN encoder since different channels can extract graph information from different perspectives. Then, we propose a novel decoder with a global-to-local learning pattern to decode graph information, and this decoder can better extract global and local information. We also introduce a balanced regularization loss to supervise the training states of the encoder and decoder so that they are sufficiently trained. Experiments on standard datasets demonstrate the effectiveness of our MCCD in terms of accuracy, runtime, and computational complexity.
引用
收藏
页码:13206 / 13216
页数:11
相关论文
共 50 条
  • [1] Hyperbolic multichannel graph convolutional network for social recommendation
    Yang X.
    Chang M.
    Yu J.
    Wang D.
    Dang Z.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 9543 - 9557
  • [2] Transformer and Graph Convolutional Network for Text Classification
    Liu, Boting
    Guan, Weili
    Yang, Changjin
    Fang, Zhijie
    Lu, Zhiheng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [3] Continual Graph Convolutional Network for Text Classification
    Wu, Tiandeng
    Liu, Qijiong
    Cao, Yi
    Huang, Yao
    Wu, Xiao-Ming
    Ding, Jiandong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13754 - 13762
  • [4] Cervical cell classification with graph convolutional network
    Shi, Jun
    Wang, Ruoyu
    Zheng, Yushan
    Jiang, Zhiguo
    Zhang, Haopeng
    Yu, Lanlan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198
  • [5] Transformer and Graph Convolutional Network for Text Classification
    Boting Liu
    Weili Guan
    Changjin Yang
    Zhijie Fang
    Zhiheng Lu
    International Journal of Computational Intelligence Systems, 16
  • [6] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia S.
    Jiang S.
    Zhang S.
    Xu M.
    Jia X.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [7] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS ONE, 2023, 18 (03):
  • [8] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS BIOLOGY, 2023, 21 (03)
  • [9] A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
    Lin, Lan
    Xiong, Min
    Zhang, Ge
    Kang, Wenjie
    Sun, Shen
    Wu, Shuicai
    SENSORS, 2023, 23 (04)
  • [10] Graph Classification Network Based on Graph Convolutional Network and Globally Aligned Strategy
    Xue, Hui
    Sun, Weixiang
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (06): : 96 - 104