Continual Graph Convolutional Network for Text Classification

被引:0
|
作者
Wu, Tiandeng [1 ]
Liu, Qijiong [2 ]
Cao, Yi [1 ]
Huang, Yao [1 ]
Wu, Xiao-Ming [2 ]
Ding, Jiandong [1 ]
机构
[1] Huawei Technol Co Ltd, Shenzhen, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically up-date the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.
引用
收藏
页码:13754 / 13762
页数:9
相关论文
共 50 条
  • [1] Transformer and Graph Convolutional Network for Text Classification
    Liu, Boting
    Guan, Weili
    Yang, Changjin
    Fang, Zhijie
    Lu, Zhiheng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [2] Transformer and Graph Convolutional Network for Text Classification
    Boting Liu
    Weili Guan
    Changjin Yang
    Zhijie Fang
    Zhiheng Lu
    International Journal of Computational Intelligence Systems, 16
  • [3] Circulant Tensor Graph Convolutional Network for Text Classification
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 32 - 46
  • [4] A Quantum Spatial Graph Convolutional Network for Text Classification
    Shah, Syed Mustajar Ahmad
    Ge, Hongwei
    Haider, Sami Ahmed
    Irshad, Muhammad
    Noman, Sohail M.
    Arshad, Jehangir
    Ahmad, Asfandeyar
    Younas, Talha
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 36 (02): : 369 - 382
  • [5] Circulant Tensor Graph Convolutional Network for Text Classification
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13188 LNCS : 32 - 46
  • [6] The Study on the Text Classification Based on Graph Convolutional Network and BiLSTM
    Xue, Bingxin
    Zhu, Cui
    Wang, Xuan
    Zhu, Wenjun
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [7] Heterogeneous graph convolutional neural network for short text classification
    Huang B.
    Li P.
    Fang Z.
    Lei L.
    Wang C.
    International Journal of Intelligent Systems Technologies and Applications, 2023, 21 (04) : 344 - 365
  • [8] An Integration Model Based on Graph Convolutional Network for Text Classification
    Tang, Hengliang
    Mi, Yuan
    Xue, Fei
    Cao, Yang
    IEEE ACCESS, 2020, 8 : 148865 - 148876
  • [9] Tensor residual graph convolutional network model for text classification
    Fan F.
    Lei X.
    Deng X.
    Nie X.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (02): : 52 - 57
  • [10] Graph Convolutional Networks for Text Classification
    Yao, Liang
    Mao, Chengsheng
    Luo, Yuan
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 7370 - 7377