A Framework for Physics-Informed Deep Learning Over Freeform Domains

被引:4
|
作者
Mezzadri, Francesco [1 ]
Gasick, Joshua [2 ]
Qian, Xiaoping [2 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Engn Enzo Ferrari, Via P Vivarelli 10-1,Bldg 26, I-41125 Modena, Italy
[2] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Physics -informed deep learning; Neural network; NURBS; Computer -aided design; Partial differential equations; OPTIMIZATION; NETWORKS;
D O I
10.1016/j.cad.2023.103520
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning is a popular approach for approximating the solutions to partial differential equations (PDEs) over different material parameters and boundary conditions. However, no work has yet been reported on learning PDE solutions over changing shapes of the underlying domain. We present a framework to train neural networks (NN) and physics-informed neural networks (PINNs) to learn the solutions to PDEs defined over varying freeform domains. This is made possible through our adoption of a parametric non-uniform rational B-Spline (NURBS) representation of the underlying physical shape. Distinct physical domains are mapped to a common parametric space via NURBS parameterization. In our approach, we formulate NNs and PINNs that learn the solutions to PDEs as a function of the shape of the domain itself through shape parameters. Under this formulation, the loss function is based on an unchanging parametric domain that maps to a variable physical domain. Residual computation in PINNs is made possible through the Jacobian of the mapping. Numerical results show that our networks can be trained to predict the solutions to a PDE defined over an entire set of shapes. We focus on the linear elasticity PDE and show how we can build a surrogate model that is able to predict displacements and stresses over a variety of freeform domains. To assess the efficacy of all networks in this work, data efficiency, network accuracy, and the capacity of networks to extrapolate are considered and compared between NNs and PINNs. The comparison includes cases where little training data is available. Transfer learning and applications to shape optimization are analyzed as well. A selection of the used codes and datasets is provided at https://github.com/fmezzadri/shape_parameterized.git. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Physics-informed deep learning for one-dimensional consolidation
    Yared W.Bekele
    Journal of Rock Mechanics and Geotechnical Engineering, 2021, (02) : 420 - 430
  • [32] Physics-informed deep learning approach for modeling crustal deformation
    Okazaki, Tomohisa
    Ito, Takeo
    Hirahara, Kazuro
    Ueda, Naonori
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [33] Physics-informed Deep Learning for Flow Modelling and Aerodynamic Optimization
    Sun, Yubiao
    Sengupta, Ushnish
    Juniper, Matthew
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1149 - 1155
  • [34] Room impulse response reconstruction with physics-informed deep learning
    Karakonstantis, Xenofon
    Caviedes-Nozal, Diego
    Richard, Antoine
    Fernandez-Grande, Efren
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02): : 1048 - 1059
  • [35] Physics-informed deep generative learning for quantitative assessment of the retina
    Brown, Emmeline E.
    Guy, Andrew A.
    Holroyd, Natalie A.
    Sweeney, Paul W.
    Gourmet, Lucie
    Coleman, Hannah
    Walsh, Claire
    Markaki, Athina E.
    Shipley, Rebecca
    Rajendram, Ranjan
    Walker-Samuel, Simon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Towards physics-informed deep learning for turbulent flow prediction
    Wang, Rui
    Kashinath, Karthik
    Mustafa, Mustafa
    Albert, Adrian
    Yu, Rose
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1457 - 1466
  • [37] Physics-informed deep learning approach for modeling crustal deformation
    Tomohisa Okazaki
    Takeo Ito
    Kazuro Hirahara
    Naonori Ueda
    Nature Communications, 13
  • [38] Physics-informed deep learning for one-dimensional consolidation
    Bekele, Yared W.
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (02) : 420 - 430
  • [39] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [40] Physics-informed deep learning to forecast (M)over-capmax during hydraulic fracturing
    Li, Ziyan
    Eaton, David W.
    Davidsen, Joern
    SCIENTIFIC REPORTS, 2023, 13 (01):