TI2Net: Temporal Identity Inconsistency Network for Deepfake Detection

被引:15
|
作者
Liu, Baoping [1 ]
Liu, Bo [1 ]
Ding, Ming [2 ]
Zhu, Tianqing [1 ]
Yu, Xin [1 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
[2] CSIRO, Data61, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/WACV56688.2023.00467
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the Temporal Identity Inconsistency Network (TI(2)Net), a Deepfake detector that focuses on temporal identity inconsistency. Specifically, TI(2)Net recognizes fake videos by capturing the dissimilarities of human faces among video frames of the same identity. Therefore, TI(2)Net is a reference-agnostic detector and can be used on unseen datasets. For a video clip of a given identity, identity information in all frames will first be encoded to identity vectors. TI(2)Net learns the temporal identity embedding from the temporal difference of the identity vectors. The temporal embedding, representing the identity inconsistency in the video clip, is finally used to determine the authenticity of the video clip. During training, TI(2)Net incorporates triplet loss to learn more discriminative temporal embeddings. We conduct comprehensive experiments to evaluate the performance of the proposed TI(2)Net. Experimental results indicate that TI(2)Net generalizes well to unseen manipulations and datasets with unseen identities. Besides, TI(2)Net also shows robust performance against compression and additive noise.
引用
收藏
页码:4680 / 4689
页数:10
相关论文
共 50 条
  • [41] A2Net: An Anchor-Free Alignment Network for Oriented Object Detection in Remote Sensing Images
    Yang, Qingyong
    Cao, Likun
    Huang, Chenchen
    Song, Qi
    Yuan, Chunmiao
    IEEE ACCESS, 2024, 12 : 42017 - 42027
  • [42] TAS2-Net: Triple-Attention Semantic Segmentation Network for Small Surface Defect Detection
    Liu, Taiheng
    He, Zhaoshui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [43] BR2Net: Defocus Blur Detection Via a Bidirectional Channel Attention Residual Refining Network
    Tang, Chang
    Liu, Xinwang
    An, Shan
    Wang, Pichao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 624 - 635
  • [44] FCD-R2U-net: Forest change detection in bi-temporal satellite images using the recurrent residual-based U-net
    Ehsan Khankeshizadeh
    Ali Mohammadzadeh
    Armin Moghimi
    Amin Mohsenifar
    Earth Science Informatics, 2022, 15 : 2335 - 2347
  • [45] FCD-R2U-net: Forest change detection in bi-temporal satellite images using the recurrent residual-based U-net
    Khankeshizadeh, Ehsan
    Mohammadzadeh, Ali
    Moghimi, Armin
    Mohsenifar, Amin
    EARTH SCIENCE INFORMATICS, 2022, 15 (04) : 2335 - 2347
  • [46] C2Net: content-dependent and -independent cross-attention network for anomaly detection in videos
    Liang, Jiafei
    Xiao, Yang
    Zhou, Joey Tianyi
    Yang, Feng
    Li, Ting
    Fang, Zhiwen
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1980 - 1996
  • [47] DGMA2-Net: A Difference-Guided Multiscale Aggregation Attention Network for Remote Sensing Change Detection
    Ying, Zilu
    Tan, Zijun
    Zhai, Yikui
    Jia, Xudong
    Li, Wenba
    Zeng, Junying
    Genovese, Angelo
    Piuri, Vincenzo
    Scotti, Fabio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [48] AgF2Net: Attention-Guided Feature Fusion Network for Multitemporal Hyperspectral Image Change Detection
    Wang, Xianghai
    Ni, Weihan
    Feng, Yining
    Song, Liyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [49] MT-U2Net: Lightweight detection network for high-precision magnetic tile surface defect localization
    Jiang, Chenzhe
    Zhang, Xudong
    Xu, Banglian
    Zheng, Qinghe
    Li, Zhengtao
    Zhang, Leihong
    Zhang, Dawei
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [50] D2net: a dual-branch lightweight network for conveyor belt rotation detection in pipe belt conveyors
    Wang, Xingyu
    Hao, Nini
    Yun, Yu
    Zhang, Mengchao
    Zhang, Yuan
    Zhong, Zeqing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)