Reduced isometric knee extensor force following anodal transcranial direct current stimulation of the ipsilateral motor cortex

被引:3
|
作者
Savoury, Ryan G. [1 ]
Kibele, Armin [2 ]
Power, Kevin [1 ]
Herat, Nehara [1 ]
Alizadeh, Shahab [1 ]
Behm, David [1 ]
机构
[1] Mem Univ Newfoundland, Sch Human Kinet & Recreat, St John, NF, Canada
[2] Univ Kassel, Inst Sport & Sport Sci, Kassel, Germany
来源
PLOS ONE | 2023年 / 18卷 / 01期
关键词
POSTACTIVATION POTENTIATION; PERCEIVED EXERTION; PREFRONTAL CORTEX; ELBOW FLEXORS; TASK FAILURE; WARM-UP; TDCS; TIME; EXCITABILITY; PERFORMANCE;
D O I
10.1371/journal.pone.0280129
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe goal of this study was to determine if 10-min of anodal transcranial direct current stimulation (a-tDCS) to the motor cortex (M1) is capable of modulating quadriceps isometric maximal voluntary contraction (MVC) force or fatigue endurance contralateral or ipsilateral to the stimulation site. MethodsIn a randomized, cross-over design, 16 (8 females) individuals underwent two sessions of a-tDCS and two sham tDCS (s-tDCS) sessions targeting the left M1 (all participants were right limb dominant), with testing of either the left (ipsilateral) or right (contralateral) quadriceps. Knee extensor (KE) MVC force was recorded prior to and following the a-tDCS and s-tDCS protocols. Additionally, a repetitive MVC fatiguing protocol (12 MVCs with work-rest ratio of 5:10-s) was completed following each tDCS protocol. ResultsThere was a significant interaction effect for stimulation condition x leg tested x time [F-(1,F-60) = 7.156, p = 0.010, eta p(2) = 0.11], which revealed a significant absolute KE MVC force reduction in the contralateral leg following s-tDCS (p < 0.001, d = 1.2) and in the ipsilateral leg following a-tDCS (p < 0.001, d = 1.09). A significant interaction effect for condition x leg tested [F-(1,F-56) = 8.12, p = 0.006, eta p(2) = 0.13], showed a significantly lower ipsilateral quadriceps (to tDCS) relative MVC force with a-tDCS, versus s-tDCS [t(15) = -3.07, p = 0.016, d = -0.77]. There was no significant difference between the relative contralateral quadriceps (to tDCS) MVC force for a-tDCS and s-tDCS. Although there was an overall significant [F-(1,F-56) = 8.36, p < 0.001] 12.1% force decrease between the first and twelfth MVC repetitions, there were no significant main or interaction effects for fatigue index force. Conclusiona-tDCS may be ineffective at increasing maximal force or endurance and instead may be detrimental to quadriceps force production.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Anodal Transcranial Direct Current Stimulation of the Motor Cortex in Healthy Volunteers
    E. T. Erdogan
    S. S. Saydam
    A. Kurt
    S. Karamursel
    Neurophysiology, 2018, 50 : 124 - 130
  • [2] Anodal Transcranial Direct Current Stimulation of the Motor Cortex in Healthy Volunteers
    Erdogan, E. T.
    Saydam, S. S.
    Kurt, A.
    Karamursel, S.
    NEUROPHYSIOLOGY, 2018, 50 (02) : 124 - 130
  • [3] Anodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor
    Lackmy-Vallee, Alexandra
    Klomjai, Wanalee
    Bussel, Bernard
    Katz, Rose
    Roche, Nicolas
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (06) : 1505 - 1515
  • [4] Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex
    Agboada, Desmond
    Samani, Mohsen Mosayebi
    Jamil, Asif
    Kuo, Min-Fang
    Nitsche, Michael A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex
    Desmond Agboada
    Mohsen Mosayebi Samani
    Asif Jamil
    Min-Fang Kuo
    Michael A. Nitsche
    Scientific Reports, 9
  • [6] The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability
    Ates, Mehlika Panpalli
    Alaydin, Hahl Can
    Cengiz, Bulent
    BRAIN RESEARCH BULLETIN, 2018, 140 : 114 - 119
  • [7] Language training and anodal transcranial direct current stimulation of the motor cortex in chronic aphasia
    Floeel, A.
    Darkow, R.
    Meinzer, M.
    51ST ACADEMY OF APHASIA PROCEEDINGS, 2013, 94 : 243 - 244
  • [8] After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats
    Koo, Ho
    Kim, Min Sun
    Han, Sang Who
    Paulus, Walter
    Nitche, Michael A.
    Kim, Yun-Hee
    Kim, Hyoung-Ihl
    Ko, Sung-Hwa
    Shin, Yong-Il
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2016, 34 (05) : 859 - 868
  • [9] Anodal transcranial direct current stimulation of motor cortex does not ameliorate spasticity in multiple sclerosis
    Iodice, Rosa
    Dubbioso, Raffaele
    Ruggiero, Lucia
    Santoro, Lucio
    Manganelli, Fiore
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2015, 33 (04) : 487 - 492
  • [10] Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity
    Kidgell, Dawson J.
    Daly, Robin M.
    Young, Kayleigh
    Lum, Jarrod
    Tooley, Gregory
    Jaberzadeh, Shapour
    Zoghi, Maryam
    Pearce, Alan J.
    NEURAL PLASTICITY, 2013, 2013