Long-term organic fertilization promotes the resilience of soil multifunctionality driven by bacterial communities

被引:59
|
作者
Luo, Jipeng [1 ]
Liao, Guangcheng [1 ]
Banerjee, Samiran [2 ]
Gu, Shaohua [3 ,4 ]
Liang, Jiabin [1 ]
Guo, Xinyu [1 ]
Zhao, Heping [1 ]
Liang, Yongchao [1 ]
Li, Tingqiang [1 ,5 ,6 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[2] North Dakota State Univ, Dept Microbiol Sci, Fargo, ND USA
[3] Peking Univ, Ctr Quantitat Biol, Beijing, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[5] Zhejiang Prov Key Lab Agr Resources & Environm, Hangzhou 310058, Peoples R China
[6] Zhejiang Univ, Natl Demonstrat Ctr Expt Environm & Resources Educ, Hangzhou 310058, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Long-term fertilization; Temporal resilience; Soil multifunctionality; Copiotrophic taxa; Biodiversity loss; Microbial community; MICROBIAL DIVERSITY; PROKARYOTIC DIVERSITY; PLANT DIVERSITY; CROP YIELDS; BIODIVERSITY; RESISTANCE; PRODUCTIVITY; CHINA; AGROECOSYSTEMS; REDUNDANCY;
D O I
10.1016/j.soilbio.2022.108922
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Long-term intensive fertilization is a practice common around the world and gradually alters soil microbiome, however, its influences on the temporal resilience of soil multifunctionality to biodiversity loss and biodiversity-multifunctionality relationships remain poorly understood. Here, we manipulated soil biodiversity using the dilution-to-extinction approach to examine the temporal variability in individual functions, soil multi -functionality and their relationships with bacterial and fungal communities under different fertilization treat-ments during a 90-day re-colonization process. We found that organic fertilization accelerated the resilience of single functions and soil multifunctionality to biodiversity loss compared with mineral fertilization and unfer-tilized control. The fungal community was less resilient than bacterial community to disturbances caused by fertilization and dilution. Bacterial but not fungal diversity was significantly and positively related to multi -functionality, and the strength of the diversity-multifunctionality relationships in organic fertilized soil was 3 -and 67-fold higher than that in unfertilized and mineral fertilized soil, respectively. Both organic and mineral nutrient inputs promoted copiotroph-dominated bacterial assemblages (including Proteobacteria and Bacteroidetes members) and suppressed oligotrophs (mostly Acidobacteria and Chloroflexi), which paralleled multifunctionality resilience patterns in fertilized soils. beta-Diversity of bacterial copiotrophs alone or in combination was signifi-cantly related to changes in multifunctionality. Random forest analysis and structural equation modeling indi-cated that bacterial community diversity and composition along with soil carbon and nitrogen basically determined soil multifunctionality, with 70% of the variance in multifunctionality being explained. Rare taxa from the bacterial copiotrophs were particularly important for maintaining multifunctionality. Our results un-derline the importance of fertilization-induced shifts in microbial ecophysiological strategies for promoting the resilience of soil multifunctionality to biodiversity loss, and the need to preserve the diversity of rare copio-trophic taxa for stable provision of ecosystem functions under future environmental change.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of long-term fertilization on bacterial composition in rice paddy soil
    Wu, Minna
    Qin, Hongling
    Chen, Zhe
    Wu, Jinshui
    Wei, Wenxue
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (04) : 397 - 405
  • [32] Effects of Long-term Fertilization on Soil Organic Nitrogen Fractions in Vegetable Soil
    Zhang Enping
    Yu Hongfei
    Zhang Shuhong
    Min Yue
    3RD CONFERENCE ON KEY TECHNOLOGY OF HORTICULTURE, CKTH 2011, 2011, : 62 - 66
  • [33] Variations in the diversity of soil bacterial and archaeal communities in response to different long-term fertilization regimes in maize fields
    Megyes, Melinda
    Borsodi, Andrea K.
    Arendas, Tamas
    Marialigeti, Karoly
    APPLIED SOIL ECOLOGY, 2021, 168
  • [34] How Soil Bacterial Communities with Seasonal Variation Respond Differently to Long-Term Fertilization and Plastic Film Mulching
    Farmer, John
    Schaeffer, Sean
    Zhang, Bin
    An, Tingting
    Pei, Jiubo
    Zhuang, Jie
    Wang, Jingkuan
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2018, 27 (04): : 1483 - 1495
  • [35] Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities
    Lei Wang
    Jing Wang
    Jie Yuan
    Zhonghou Tang
    Jidong Wang
    Yongchun Zhang
    Microbial Ecology, 2023, 86 : 2716 - 2732
  • [36] Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities
    Wang, Lei
    Wang, Jing
    Yuan, Jie
    Tang, Zhonghou
    Wang, Jidong
    Zhang, Yongchun
    MICROBIAL ECOLOGY, 2023, 86 (04) : 2716 - 2732
  • [37] Long-term cover cropping improved soil bacterial community and soil multifunctionality in a Carya cathayensis plantation
    Hu, Yingbing
    Jin, Jin
    Ding, Kai
    Ye, Zihao
    Wang, Xiaoxuan
    Palansooriya, Kumuduni Niroshika
    Fu, Weijun
    Wu, Jiasen
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 347
  • [38] Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition
    Wei, Wanling
    Guan, Dawei
    Ma, Mingchao
    Jiang, Xin
    Fan, Fenliang
    Meng, Fangang
    Li, Li
    Zhao, Baisuo
    Zhao, Yubin
    Cao, Fengming
    Chen, Huijun
    Li, Jun
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [39] An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization
    Randall, Kate C.
    Brennan, Fiona
    Clipson, Nicholas
    Creamer, Rachel E.
    Griffiths, Bryan S.
    Storey, Sean
    Doyle, Evelyn
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [40] Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols
    Wang, Qingfeng
    Jiang, Xin
    Guan, Dawei
    Wei, Dan
    Zhao, Baisuo
    Ma, Mingchao
    Chen, Sanfeng
    Li, Li
    Cao, Fengming
    Li, Jun
    APPLIED SOIL ECOLOGY, 2018, 125 : 88 - 96