Resolution enhancement of microwave sensors using super-resolution generative adversarial network

被引:12
|
作者
Kazemi, Nazli [1 ]
Musilek, Petr [1 ,2 ]
机构
[1] Univ Alberta, Elect & Comp Engn, Edmonton, AB, Canada
[2] Univ Hradec Kralove, Appl Cybernet, Hradec Kralove, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
SRGAN; Microwave sensor; Glucose; Resolution; Coupled CSRR; RESONATOR; PERMITTIVITY;
D O I
10.1016/j.eswa.2022.119252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents an approach to significantly improve the resolution of a highly-sensitive microwave planar sensor response with a super-resolution generative adversarial network (SRGAN). Three identical complementary split-ring resonators are coupled so that the sensitivity is doubled. This highly-sensitive resonator with a deep transmission zero at 4.7 GHz is deployed to measure minute variations of glucose in interstitial fluid. Measuring the sensor response with 1001 frequency-points allows differentiating 10 glucose samples within the range of 40-400 mg/dL. However, in practical readout systems with limited number of frequency-points (here 28), recognizing the deep zero in the S21 response lacks precision. Sensor responses (magnitude vs. frequency and phase vs. frequency) are converted into equivalent 2D images (heatmaps: phase vs. frequency with colored pixels as amplitude) to be compatible as SRGAN input. As a result of 8-fold resolution enhancement using SRGAN, the classification accuracy is substantially improved from 62.1% to 93.3%. The proposed passive sensor followed by an SRGAN unit is shown to be practical as a wearable glucose monitoring sensor due to its high-sensitivity and high resolution features in a low-profile design.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Underwater Acoustic Image Enhancement by Using Fast Super-Resolution with Generative Adversarial Networks
    Bucci, Alessandro
    Topini, Alberto
    Franchi, Matteo
    Zacchini, Leonardo
    Secciani, Nicola
    Ridolfi, Alessandro
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [42] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [43] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [44] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [45] ISRGAN: Improved Super-Resolution Using Generative Adversarial Networks
    Chudasama, Vishal
    Upla, Kishor
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 109 - 127
  • [46] Generative adversarial network in wavelet domain for single image super-resolution
    Zhang, Fan
    Wang, Xinwei
    Cao, Lin
    Du, Kangning
    Guo, Yanan
    Journal of Computers (Taiwan), 2021, 32 (03) : 249 - 262
  • [47] Multiscale generative adversarial network for real-world super-resolution
    Sun, Ying
    Yang, Zhiwen
    Tao, Bo
    Jiang, Guozhang
    Hao, Zhiqiang
    Chen, Baojia
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (21):
  • [48] Generative Adversarial Network for Image Super-Resolution Combining Texture Loss
    Jiang, Yuning
    Li, Jinhua
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [49] Dual Discriminator Generative Adversarial Network for Single Image Super-Resolution
    Liu, Peng
    Hong, Ying
    Liu, Yan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 680 - 687
  • [50] A Super-Resolution Reconstruction Method for Shale Based on Generative Adversarial Network
    Ting Zhang
    Guangshun Hu
    Yi Yang
    Yi Du
    Transport in Porous Media, 2023, 150 : 383 - 426