Cramer moderate deviations for a supercritical Galton-Watson process

被引:1
|
作者
Doukhan, Paul [1 ]
Fan, Xiequan [2 ]
Gao, Zhi-Qiang [3 ]
机构
[1] CY Univ, AGM, UMR 8088, Site St Martin, F-95000 Cergy Pontoise, France
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Cram?r moderate deviations; Lotka-Nagaev estimator; Offspring mean; BRANCHING-PROCESS; SUMS; RATES; MOMENTS;
D O I
10.1016/j.spl.2022.109711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (Zn)n >= 0 be a supercritical Galton-Watson process. The Lotka-Nagaev estimator Zn+1/Zn is a common estimator for the offspring mean. In this paper, we establish some Cramer moderate deviation results for the Lotka-Nagaev estimator via a martingale method. Applications to construction of confidence intervals are also given.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条