Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces

被引:4
|
作者
Xie, Zhongbing [1 ]
Cai, Gang [1 ]
Dong, Qiao-Li [2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc & Coll Sci, Tianjin 300300, Peoples R China
关键词
Banach space; Bregman projection; Pseudomonotone operator; Strong convergence; Variational inequality; FIXED-POINT; EXTRAGRADIENT ALGORITHM;
D O I
10.1007/s11075-022-01414-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to introduce a new projection method for solving pseudomonotone variational inequality problems in real reflexive Banach spaces. The main algorithm is based on the self-adaptive method, subgradient extragradient method and Bregman projection method. Under some appropriate assumptions imposed on the parameters, we prove a strong convergence theorem of the proposed algorithm. Finally, several numerical examples are given to show that our method has better convergence performance than the known results in the literatures.
引用
收藏
页码:269 / 294
页数:26
相关论文
共 50 条
  • [31] Strong Convergence Theorems for Variational Inequality Problems and Fixed Point Problems in Banach Spaces
    Cai, Gang
    Bu, Shangquan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 525 - 540
  • [32] TWO GENERALIZED STRONG CONVERGENCE ALGORITHMS FOR VARIATIONAL INEQUALITY PROBLEMS IN BANACH SPACES
    Ghadampour, Mostafa
    Soori, Ebrahim
    Agarwal, Ravi p.
    O'regan, Donal
    FIXED POINT THEORY, 2024, 25 (01): : 143 - 162
  • [33] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi A.O.E.
    Mewomo O.T.
    Yao J.C.
    Qin X.
    Journal of Nonlinear Functional Analysis, 2023, 2023 (01):
  • [34] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi, A. O. E.
    Mewomo, O. T.
    Yao, J. C.
    Qin, X.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2023, 2023
  • [35] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    O. K. Oyewole
    H. A. Abass
    A. A. Mebawondu
    K. O. Aremu
    Numerical Algorithms, 2022, 89 : 769 - 789
  • [36] A VARIATIONAL INEQUALITY THEORY FOR CONSTRAINED PROBLEMS IN REFLEXIVE BANACH SPACES
    Asfaw, T. M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02) : 462 - 480
  • [37] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    Oyewole, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    Aremu, K. O.
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 769 - 789
  • [38] On the generalized Bregman projection operator in reflexive Banach spaces
    Eskandani, G. Zamani
    Azarmi, S.
    Raeisi, M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (01)
  • [39] On the generalized Bregman projection operator in reflexive Banach spaces
    G. Zamani Eskandani
    S. Azarmi
    M. Raeisi
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [40] Strong convergence of double-projection method for variational inequality problems
    Dang Van Hieu
    Pham Kim Quy
    Hoang Ngoc Duong
    Computational and Applied Mathematics, 2021, 40