On the critical Choquard-Kirchhoff problem on the Heisenberg group

被引:13
|
作者
Sun, Xueqi [1 ]
Song, Yueqiang [1 ]
Liang, Sihua [1 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Heisenberg group; Choquard-Kirchhoff equation; Hardy-Littlewood-Sobolev critical exponent; Concentration-compactness principle; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-HARDY SYSTEMS; MULTIPLICITY; EXISTENCE; LAPLACIAN; EQUATIONS; INEQUALITIES;
D O I
10.1515/anona-2022-0270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form: M(parallel to u parallel to(2))(-Delta(H)u+V(xi)u) = [integral N-H vertical bar u(eta)(Q lambda)*/vertical bar eta(-1 xi)vertical bar lambda d eta]vertical bar u vertical bar(Q lambda)*(-2)u + mu f (xi,u), where M is the Kirchhoff function, Delta(H) is the Kohn Laplacian on the Heisenberg group H-N , f is a Caratheodory function, mu > 0 is a parameter and Q(lambda)* = 2Q-lambda/Q-2 is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We first establish a new version of the concentration-compactness principle for the Choquard equation on the Heisenberg group. Then, combining with the mountain pass theorem, we obtain the existence of nontrivial solutions to the aforementioned problem in the case of nondegenerate and degenerate cases.
引用
收藏
页码:210 / 236
页数:27
相关论文
共 50 条