On the critical Choquard-Kirchhoff problem on the Heisenberg group

被引:13
|
作者
Sun, Xueqi [1 ]
Song, Yueqiang [1 ]
Liang, Sihua [1 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Heisenberg group; Choquard-Kirchhoff equation; Hardy-Littlewood-Sobolev critical exponent; Concentration-compactness principle; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-HARDY SYSTEMS; MULTIPLICITY; EXISTENCE; LAPLACIAN; EQUATIONS; INEQUALITIES;
D O I
10.1515/anona-2022-0270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the following critical Choquard-Kirchhoff problem on the Heisenberg group of the form: M(parallel to u parallel to(2))(-Delta(H)u+V(xi)u) = [integral N-H vertical bar u(eta)(Q lambda)*/vertical bar eta(-1 xi)vertical bar lambda d eta]vertical bar u vertical bar(Q lambda)*(-2)u + mu f (xi,u), where M is the Kirchhoff function, Delta(H) is the Kohn Laplacian on the Heisenberg group H-N , f is a Caratheodory function, mu > 0 is a parameter and Q(lambda)* = 2Q-lambda/Q-2 is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We first establish a new version of the concentration-compactness principle for the Choquard equation on the Heisenberg group. Then, combining with the mountain pass theorem, we obtain the existence of nontrivial solutions to the aforementioned problem in the case of nondegenerate and degenerate cases.
引用
收藏
页码:210 / 236
页数:27
相关论文
共 50 条
  • [1] A critical fractional Choquard-Kirchhoff problem with magnetic field
    Xiang Mingqi
    Radulescu, Vicentiu D.
    Zhang, Binlin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (04)
  • [2] Existence of Solutions for a Critical Choquard-Kirchhoff Problem with Variable Exponents
    Zhang, Youpei
    Qin, Dongdong
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [3] Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group
    Xueqi Sun
    Baoling Yang
    Yueqiang Song
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3439 - 3457
  • [4] Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group
    Sun, Xueqi
    Yang, Baoling
    Song, Yueqiang
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3439 - 3457
  • [5] Multiple solutions for critical Choquard-Kirchhoff type equations
    Liang, Sihua
    Pucci, Patrizia
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 400 - 419
  • [7] Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential
    Wenjing Chen
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Analysis and Mathematical Physics, 2021, 11
  • [8] Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential
    Chen, Wenjing
    Radulescu, Vicentiu D.
    Zhang, Binlin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [9] On a critical Choquard-Kirchhoff p-sub-Laplacian equation in Hn
    Liang, Sihua
    Pucci, Patrizia
    Song, Yueqiang
    Sun, Xueqi
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [10] Normalized ground states for a kind of Choquard-Kirchhoff equations with critical nonlinearities
    Fei, Jiayi
    Zhang, Qiongfen
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):