Modeling Longitudinal Optical Coherence Tomography Images for Monitoring and Analysis of Glaucoma Progression

被引:1
|
作者
Fishbaugh, James [1 ]
Zambrano, Ronald [2 ]
Schuman, Joel S. [3 ]
Wollstein, Gadi [2 ]
Vicory, Jared [1 ]
Paniagua, Beatriz [1 ]
机构
[1] Kitware Inc, Clifton Park, NY 12065 USA
[2] NYU Grossman Sch Med, New York, NY 10016 USA
[3] Wills Eye Hosp & Res Inst, Philadelphia, PA 19107 USA
来源
关键词
longitudinal shape analysis; hierarchical modeling; diffeomorphic regression; optical coherence tomography; glaucoma progression; RETINAL NERVE-FIBER; THICKNESS MEASUREMENTS; LAYER THICKNESS; MACULAR THICKNESS; REPRODUCIBILITY;
D O I
10.1007/978-3-031-46914-5_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma causes progressive visual field deterioration and is the leading cause of blindness worldwide. Glaucomatous damage is irreversible and greatly impacts quality of life. Therefore, it is critically important to detect glaucoma early and closely monitor progression to preserve functional vision. Glaucoma is routinely monitored in the clinical setting using optical coherence tomography (OCT) for derived measures such as the thickness of important visual structures. There is not a consensus of what measures represent the most relevant biomarkers of glaucoma progression. Further, despite the increasing availability of longitudinal OCT data, a quantitative model of 3D structural change over time associated with glaucoma does not exist. In this paper we present an algorithm that will perform hierarchical geodesic modeling at the imaging level, considering 3D OCT images as observations of structural change over time. Hierarchical modeling includes subject-wise trajectories as geodesics in the space of diffeomorphisms and population level (glaucoma vs control) trajectories are also geodesics which explain subject-wise trajectories as deviations from the mean. Our preliminary experiments demonstrate a greater magnitude of structural change associated with glaucoma compared to normal aging. Our algorithm has the potential application in patient-specific monitoring and analysis of glaucoma progression as well as a statistical model of population trends and population variability.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条
  • [21] Detection of Primary Angle Closure Glaucoma Progression by Optical Coherence Tomography
    Kurysheva, Natalia I.
    Lepeshkina, Lyudmila V.
    JOURNAL OF GLAUCOMA, 2021, 30 (05) : 410 - 420
  • [22] Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
    Zhang, Xinbo
    Dastiridou, Anna
    Francis, Brian A.
    Tan, Ou
    Varma, Rohit
    Greenfield, David S.
    Schuman, Joel S.
    Huang, David
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 184 : 63 - 74
  • [23] Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field
    Dastiridou, Anna
    Zhang, Xinbo
    Francis, Brian Alan
    Tan, Ou
    Varma, Rohit
    Greenfield, David S.
    Schuman, Joel S.
    Huang, David
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [24] Detection of Glaucoma Progression on Longitudinal Series of Macular Optical Coherence Tomography Angiography Maps with a Deep Learning Model
    Mohammadzadeh, Vahid
    Moghimi, Sasan
    Liang, Youwei
    Xie, Pengtao
    Nishida, Takashi
    Kamalipour, Alireza
    Christopher, Mark
    Zangwill, Linda
    Javidi, Tara
    Weinreb, Robert N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [25] Effect of baseline test selection on glaucoma progression detection by optical coherence tomography-guided progression analysis
    Kang, Dong Hyun
    Hwang, Young Hoon
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (06) : 783 - 788
  • [26] Evaluation of Retinal Nerve Fiber Layer Progression in Glaucoma: A Study on Optical Coherence Tomography Guided Progression Analysis
    Leung, Christopher Kai-shun
    Cheung, Carol Yim Lui
    Weinreb, Robert N.
    Qiu, Kunliang
    Liu, Shu
    Li, Haitao
    Xu, Guihua
    Fan, Ning
    Pang, Chi Pui
    Tse, Kwok Kay
    Lam, Dennis Shun Chiu
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (01) : 217 - 222
  • [27] Detection of Glaucoma Using Anterior Segment Optical Coherence Tomography Images
    Priyanka, P.
    Juliet, V. Norris
    Devi, S. Shenbaga
    COMPUTER AIDED INTERVENTION AND DIAGNOSTICS IN CLINICAL AND MEDICAL IMAGES, 2019, 31 : 293 - 301
  • [28] Automated detection of glaucoma using optical coherence tomography angiogram images
    Chan, Yam Meng
    Ng, E. Y. K.
    Jahmunah, V.
    Koh, Joel En Wei
    Lih, Oh Shu
    Leon, Leonard Yip Wei
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 115
  • [29] Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT)
    Renard, J-P
    Fenolland, R.
    Giraud, J-M
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2019, 42 (05): : 499 - 516
  • [30] Spectral Analysis of Optical Coherence Tomography Images
    Pitris, Costas
    Kartakoulis, Andreas
    Ioannides, Panayiotis
    2008 IEEE INTERNATIONAL WORKSHOP ON IMAGING SYSTEMS AND TECHNIQUES, 2008, : 60 - 63