An improved deep reinforcement learning-based scheduling approach for dynamic task scheduling in cloud manufacturing

被引:7
|
作者
Wang, Xiaohan [1 ]
Zhang, Lin [1 ,4 ,5 ]
Liu, Yongkui [2 ]
Laili, Yuanjun [1 ,3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
[2] Xidian Univ, Sch Mechanoelect Engn, Xian, Peoples R China
[3] Zhongguancun Lab, Beijing, Peoples R China
[4] State Key Lab Intelligent Mfg Syst Technol, Beijing, Peoples R China
[5] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud manufacturing; deep reinforcement learning; dynamic scheduling; intelligent decision-making; combinatorial optimization;
D O I
10.1080/00207543.2023.2253326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic task scheduling problem in cloud manufacturing (CMfg) is always challenging because of changing manufacturing requirements and services. To make instant decisions for task requirements, deep reinforcement learning-based (DRL-based) methods have been broadly applied to learn the scheduling policies of service providers. However, the current DRL-based scheduling methods struggle to fine-tune a pre-trained policy effectively. The resulting training from scratch takes more time and may easily overfit the environment. Additionally, most DRL-based methods with uneven action distribution and inefficient output masks largely reduce the training efficiency, thus degrading the solution quality. To this end, this paper proposes an improved DRL-based approach for dynamic task scheduling in CMfg. First, the paper uncovers the causes behind the inadequate fine-tuning ability and low training efficiency observed in existing DRL-based scheduling methods. Subsequently, a novel approach is proposed to address these issues by updating the scheduling policy while considering the distribution distance between the pre-training dataset and the in-training policy. Uncertainty weights are introduced to the loss function, and the output mask is extended to the updating procedures. Numerical experiments on thirty actual scheduling instances validate that the solution quality and generalization of the proposed approach surpass other DRL-based methods at most by 32.8% and 28.6%, respectively. Additionally, our method can effectively fine-tune a pre-trained scheduling policy, resulting in an average reward increase of up to 23.8%.
引用
收藏
页码:4014 / 4030
页数:17
相关论文
共 50 条
  • [31] Teleconsultation dynamic scheduling with a deep reinforcement learning approach
    Chen, Wenjia
    Li, Jinlin
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [32] A novel deep reinforcement learning scheme for task scheduling in cloud computing
    Siddesha, K.
    Jayaramaiah, G. V.
    Singh, Chandrapal
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 4171 - 4188
  • [33] A novel deep reinforcement learning scheme for task scheduling in cloud computing
    K. Siddesha
    G. V. Jayaramaiah
    Chandrapal Singh
    Cluster Computing, 2022, 25 : 4171 - 4188
  • [34] Scheduling of decentralized robot services in cloud manufacturing with deep reinforcement learning
    Liu, Yongkui
    Ping, Yaoyao
    Zhang, Lin
    Wang, Lihui
    Xu, Xun
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 80
  • [35] DRLBTSA: Deep reinforcement learning based task-scheduling algorithm in cloud computing
    Mangalampalli, Sudheer
    Karri, Ganesh Reddy
    Kumar, Mohit
    Khalaf, Osama Ibrahim
    Romero, Carlos Andres Tavera
    Sahib, GhaidaMuttashar Abdul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8359 - 8387
  • [36] DRLBTSA: Deep reinforcement learning based task-scheduling algorithm in cloud computing
    Sudheer Mangalampalli
    Ganesh Reddy Karri
    Mohit Kumar
    Osama Ibrahim Khalaf
    Carlos Andres Tavera Romero
    GhaidaMuttashar Abdul Sahib
    Multimedia Tools and Applications, 2024, 83 : 8359 - 8387
  • [37] Task Scheduling Mechanism Based on Reinforcement Learning in Cloud Computing
    Wang, Yugui
    Dong, Shizhong
    Fan, Weibei
    MATHEMATICS, 2023, 11 (15)
  • [38] A Dynamic Task Scheduling Method Based on Simulation in Cloud Manufacturing
    Zhou, Longfei
    Zhang, Lin
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT III, 2016, 645 : 20 - 24
  • [39] A Deep Reinforcement Learning-based Task Scheduling Algorithm for Energy Efficiency in Data Centers
    Song, Penglei
    Chi, Ce
    Ji, Kaixuan
    Liu, Zhiyong
    Zhang, Fa
    Zhang, Shikui
    Qiu, Dehui
    Wan, Xiaohua
    30TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2021), 2021,
  • [40] Deep reinforcement learning-based algorithms selectors for the resource scheduling in hierarchical Cloud computing
    Zhou G.
    Wen R.
    Tian W.
    Buyya R.
    Journal of Network and Computer Applications, 2022, 208