Gamma-Nabla Hardy-Hilbert-Type Inequalities on Time Scales

被引:2
|
作者
Almarri, Barakah [1 ]
El-Deeb, Ahmed A. [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
Hardy-Hilbert's inequality; dynamic inequality; time scales; conformable fractional nabla calculus; INTEGRAL-INEQUALITIES;
D O I
10.3390/axioms12050449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigated several novel conformable fractional gamma-nabla dynamic Hardy-Hilbert inequalities on time scales in this study. Several continuous inequalities and their corresponding discrete analogues in the literature are combined and expanded by these inequalities. Holder's inequality on time scales and a few algebraic inequalities are used to demonstrate our findings.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On a Hardy-Hilbert-type inequality with parameters
    Yang, Bicheng
    Chen, Qiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [22] HARDY TYPE INEQUALITIES ON TIME SCALES
    Oguntuase, James A.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 219 - 226
  • [23] A Variety of Nabla Hardy's Type Inequality on Time Scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Askar, Sameh S.
    Awrejcewicz, Jan
    MATHEMATICS, 2022, 10 (05)
  • [24] Dynamic Hardy-Copson-Type Inequalities via (γ, a)-Nabla-Conformable Derivatives on Time Scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Awrejcewicz, Jan
    Agarwal, Ravi P.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [25] Hilbert-type inequalities for time scale nabla calculus
    Rezk, H. M.
    AlNemer, Ghada
    Abd El-Hamid, H. A.
    Abdel-Aty, Abdel-Haleem
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [26] Hilbert-type inequalities for time scale nabla calculus
    H. M. Rezk
    Ghada AlNemer
    H. A. Abd El-Hamid
    Abdel-Haleem Abdel-Aty
    Kottakkaran Sooppy Nisar
    M. Zakarya
    Advances in Difference Equations, 2020
  • [27] A new extension of a Hardy-Hilbert-type inequality
    Huang, Qiliang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [28] A new extension of a Hardy-Hilbert-type inequality
    Qiliang Huang
    Journal of Inequalities and Applications, 2015
  • [29] Hardy-Copson type inequalities for nabla time scale calculus
    Kayar, Zeynep
    Kaymakcalan, Billur
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) : 1040 - 1064
  • [30] A more accurate multidimensional Hardy-Hilbert-type inequality
    Yang, Bicheng
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (02) : 164 - 170