A Review of Physics-Informed Machine Learning in Fluid Mechanics

被引:68
|
作者
Sharma, Pushan [1 ]
Chung, Wai Tong [1 ]
Akoush, Bassem [1 ]
Ihme, Matthias [1 ,2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Dept Photon Sci, Menlo Pk, CA 94025 USA
关键词
physics-informed machine learning; PDE-preserved learning; deep neural network; fluid mechanics; Navier-Stokes; NEURAL-NETWORKS; DATA-DRIVEN; TURBULENT; FLOWS; DECOMPOSITION; SIMULATIONS;
D O I
10.3390/en16052343
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Physics-informed machine-learning (PIML) enables the integration of domain knowledge with machine learning (ML) algorithms, which results in higher data efficiency and more stable predictions. This provides opportunities for augmenting-and even replacing-high-fidelity numerical simulations of complex turbulent flows, which are often expensive due to the requirement of high temporal and spatial resolution. In this review, we (i) provide an introduction and historical perspective of ML methods, in particular neural networks (NN), (ii) examine existing PIML applications to fluid mechanics problems, especially in complex high Reynolds number flows, (iii) demonstrate the utility of PIML techniques through a case study, and (iv) discuss the challenges and opportunities of developing PIML for fluid mechanics.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127
  • [42] Special Issue: Physics-Informed Machine Learning for Advanced Manufacturing
    Guo, Yuebin
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (08):
  • [43] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750
  • [44] Physics-Informed Machine Learning-An Emerging Trend in Tribology
    Marian, Max
    Tremmel, Stephan
    LUBRICANTS, 2023, 11 (11)
  • [45] Wind Farm Modeling with Interpretable Physics-Informed Machine Learning
    Howland, Michael F.
    Dabiri, John O.
    ENERGIES, 2019, 12 (14)
  • [46] Physics-informed neural networks for learning fluid flows with symmetry
    Younghyeon Kim
    Hyungyeol Kwak
    Jaewook Nam
    Korean Journal of Chemical Engineering, 2023, 40 : 2119 - 2127
  • [47] Unit Operation and Process Modeling with Physics-Informed Machine Learning
    Li, Haochen
    Spelman, David
    Sansalone, John
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2024, 150 (04)
  • [48] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [49] Discovering nonlinear resonances through physics-informed machine learning
    Barmparis, G. D.
    Tsironis, G. P.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (09) : C120 - C126
  • [50] Guest Editorial: Special Issue on Physics-Informed Machine Learning
    Piccialli, Francesco
    Raissi, Maizar
    Viana, Felipe A. C.
    Fortino, Giancarlo
    Lu, Huimin
    Hussain, Amir
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 964 - 966