State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles

被引:41
|
作者
Li, Guanzheng [1 ,2 ]
Li, Bin [1 ,2 ]
Li, Chao [1 ,2 ]
Wang, Shuai [1 ,2 ]
机构
[1] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin, Peoples R China
关键词
Stacking ensemble model; Interpretable machine learning; Short-term voltage profile; State of health; Bayesian optimization algorithm; Battery aging; DATA-DRIVEN METHOD; REMAINING USEFUL LIFE; CAPACITY ESTIMATION; ONLINE ESTIMATION; PREDICTION; REGRESSION; DIAGNOSIS; SYSTEM; CHARGE; FILTER;
D O I
10.1016/j.energy.2022.126064
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries are playing an increasingly important role in industrial applications such as electrical vehicles and energy storage systems. Their working performance and operation safety are significantly impacted by state of health (SOH), which will decrease after cycles of charging and discharging. This paper has proposed a novel two-stage SOH estimation method that can realize SOH estimation flexibly, rapidly and robustly. In the first stage, eight typical 300-s voltage profiles are used for describing the whole charging process and multiple aging features are extracted. Then, a novel stacking ensemble model with five base models is proposed. In the second stage, a Shapley additive explanation approach is introduced to obtain the contributions of features and understand why a prediction is made, thus reducing the concern of applying black-box model. The performance of the proposed model is verified using two different battery degradation datasets and the results show that the accuracy of the proposed model is better than conventional machine learning models including lightGBM, XGBoost, RF, SVR, and GPR. In addition, with various forms of noise interference, the proposed stacking model is proved to be more robust than conventional machine learning models.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Gao, Yang
    Zhang, Linjing
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [22] State of Health Estimation for Lithium-Ion Battery Based on Long Short Term Memory Networks
    Chen, Zheng
    Song, Xinyue
    Xiao, Renxin
    Shen, Jiangwei
    Xia, Xuelei
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [23] Determination of lithium-ion battery state-of-health based on constant-voltage charge phase
    Eddahech, Akram
    Briat, Olivier
    Vinassa, Jean-Michel
    JOURNAL OF POWER SOURCES, 2014, 258 : 218 - 227
  • [24] Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model
    Yao, Hang
    Jia, Xiang
    Zhao, Qian
    Cheng, Zhi-Jun
    Guo, Bo
    IEEE ACCESS, 2020, 8 : 95333 - 95344
  • [25] An Improved LSTNet Approach for State-of-Health Estimation of Automotive Lithium-Ion Battery
    Ping, Fan
    Miao, Xiaodong
    Yu, Hu
    Xun, Zhiwen
    ELECTRONICS, 2023, 12 (12)
  • [26] A neural-driven stochastic degradation model for state-of-health estimation of lithium-ion battery
    Long, Zhendong
    Yuan, Lian
    Yin, Aijun
    Zhou, Junlin
    Song, Lei
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [27] Interactive fusion of local and global degradation representations for rapid estimation of lithium-ion battery state-of-health
    Sun, Ziqiang
    Fan, Guodong
    Liu, Yisheng
    Zhou, Boru
    Wang, Yansong
    Chen, Shun
    Zhang, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [28] Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles
    Shu, Xing
    Li, Guang
    Zhang, Yuanjian
    Shen, Jiangwei
    Chen, Zheng
    Liu, Yonggang
    JOURNAL OF POWER SOURCES, 2020, 471
  • [29] Data-driven state-of-health estimation for lithium-ion battery based on aging features
    Li, Xining
    Ju, Lingling
    Geng, Guangchao
    Jiang, Quanyuan
    ENERGY, 2023, 274
  • [30] A Balancing Current Ratio Based State-of-Health Estimation Solution for Lithium-Ion Battery Pack
    Tang, Xiaopeng
    Gao, Furong
    Liu, Kailong
    Liu, Qi
    Foley, Aoife M.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) : 8055 - 8065