A suite of broadband physics-based ground motion simulations for the Istanbul region

被引:7
|
作者
Zhang, Wenyang [1 ,8 ]
Crempien, Jorge G. F. [2 ,3 ]
Kurtulus, Asli [4 ]
Chen, Peng-Yu [5 ]
Arduino, Pedro [6 ]
Taciroglu, Ertugrul [7 ]
机构
[1] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX USA
[2] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago, Chile
[3] Res Ctr Integrated Disaster Risk Management CIGID, Santiago, Chile
[4] Ozyegin Univ, Dept Civil Engn, Istanbul, Turkiye
[5] Natl Cent Univ, Dept Civil Engn, Taoyuan, Taiwan
[6] Univ Washington, Dept Civil & Environm Engn, Seattle, WA USA
[7] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA USA
[8] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA
来源
关键词
earthquake wave propagation; high frequency; physics-based ground motion simulation; regional-scale analysis; SEISMIC-WAVE PROPAGATION; SPECTRAL-ELEMENT METHOD; 3-DIMENSIONAL SIMULATION; DISCONTINUOUS GALERKIN; MODEL; FAULT; TOPOGRAPHY; SEA; EARTHQUAKES; VARIABILITY;
D O I
10.1002/eqe.3809
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Physics-based earthquake ground motion simulations (GMS) have acquired significant growth over the last two decades, mainly due to the explosive developments of high-performance computing techniques and resources. These techniques benefit high/medium seismicity regions such as the city of Istanbul, which presents insufficient historical ground motion data to properly estimate seismic hazard and risk. We circumvent this reality with the aid of the Texas Advanced Computing Center (TACC) facilities to perform a suite of 57 high-fidelity broadband (8-12 Hz) large-scale physics-based GMS for a region in Istanbul, Turkey. This paper focuses on the details of simulated GMS: (i) validation of the GMS approach against recorded ground motions produced by the 2019 Mw5.7$M_{w}\nobreakspace 5.7$ Silivri earthquake; (ii) characteristics of 57 different source models, which aim to consider the uncertainties of many fault rupture features, including the length and width, dip, strike, and rake angles of considered fault planes, as well as hypocenter locations and earthquake magnitudes ranging between Mw$M_{w}$ 6.5 and 7.2; (iii) high-resolution topography and bathymetry and seismic data that are incorporated into all GMS; (iv) simulation results, such as PGAs and PGVs versus Vs30$V_{s30}$ and distances to fault ruptures (Rrup$R_{\text{rup}}$), of 2912 surface stations for all 57 GMS. More importantly, this research provides a massive database of displacement, velocity and acceleration time histories in all three directions over more than 20,000 stations at both surface and bedrock levels. Such site-specific high-density and -frequency simulated ground motions can notably contribute to the seismic risk assessment of this region and many other applications.
引用
收藏
页码:1161 / 1181
页数:21
相关论文
共 50 条
  • [31] Parallel Voronoi Computation for Physics-Based Simulations
    Toss, Julio
    Comba, Joao
    Raffin, Bruno
    COMPUTING IN SCIENCE & ENGINEERING, 2016, 18 (03) : 88 - 94
  • [32] Predicting the seismic ground-motion parameters: 3D physics-based numerical simulations combined with artificial neural networks
    Ba, Zhenning
    Lyu, Linghui
    Zhao, Jingxuan
    Zhang, Yushan
    Wang, Yu
    EARTHQUAKE SPECTRA, 2024, 40 (04) : 2623 - 2650
  • [33] New generalized ANN-based hybrid broadband response spectra generator using physics-based simulations
    Varun Sharma
    J. Dhanya
    Maheshreddy Gade
    Jayalakshmi Sivasubramonian
    Natural Hazards, 2023, 116 : 1879 - 1901
  • [34] A survey of physics-based human motion simulation
    Xia, Shihong
    Wei, Yi
    Wang, Zhaoqi
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (08): : 1354 - 1361
  • [35] New generalized ANN-based hybrid broadband response spectra generator using physics-based simulations
    Sharma, Varun
    Dhanya, J.
    Gade, Maheshreddy
    Sivasubramonian, Jayalakshmi
    NATURAL HAZARDS, 2023, 116 (02) : 1879 - 1901
  • [36] Validation of physics-based regional-scale ground-motion simulations of the 2008 Mw 7.9 Wenchuan earthquake for engineering applications
    Zhang, Fan
    Mavroeidis, George P.
    Wang, Jingquan
    Papageorgiou, Apostolos S.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2022, 51 (12): : 2975 - 2999
  • [37] Physics-based simulation of human motion in flight
    Wei, Yi
    Xia, Shi-Hong
    Wang, Zhao-Qi
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (12): : 3228 - 3236
  • [38] Ontological Physics-based Motion Planning for Manipulation
    Muhayyuddin
    Akbari, Aliakbar
    Rosell, Jan
    PROCEEDINGS OF 2015 IEEE 20TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), 2015,
  • [39] Application of Pool-Based Active Learning in Physics-Based Earthquake Ground-Motion Simulation
    Khoshnevis, Naeem
    Taborda, Ricardo
    SEISMOLOGICAL RESEARCH LETTERS, 2019, 90 (02) : 614 - 622
  • [40] On the effect of background seismicity in physics-based earthquake simulations
    Bazrafshan, Arsalan
    Khaji, Naser
    Paolucci, Roberto
    JOURNAL OF ASIAN EARTH SCIENCES, 2024, 274