The estimates of trigonometric sums and new bounds on a mean value, a sequence and a cryptographic function

被引:1
|
作者
Tong, Yan [1 ]
Zeng, Xiangyong [2 ]
Zhang, Shasha [2 ]
Xu, Shiwei [3 ]
Ren, Zhengwei [4 ,5 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[3] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Peoples R China
[4] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Peoples R China
[5] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
基金
中国国家自然科学基金;
关键词
Trigonometric sum; Arithmetic mean value; Linear feedback shift register; Carlet-Feng (vectorial )Boolean function; Nonlinearity; VECTORIAL BOOLEAN FUNCTIONS; OPTIMAL ALGEBRAIC IMMUNITY; INFINITE CLASS; CONSTRUCTIONS; NONLINEARITY; INEQUALITY; THEOREMS; NUMBER;
D O I
10.1007/s10623-022-01140-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss the properties of the derivative of a special function, and propose a general approach to estimating a class of trigonometric sums based on the derivative of the special function. Then we apply the approach to three trigonometric sums and get three new estimates. Using the estimate of the first trigonometric sum, we deduce new upper and lower bounds of the arithmetic mean value for a trigonometric sum of Vinogradov. Using the estimate of the second trigonometric sum, we derive a new upper bound on the imbalance properties of Linear Feedback Shift Register subsequences. We also deduce a new lower bound on the nonlinearity of the Carlet-Feng vectorial Boolean function with the estimate of the third trigonometric sum.
引用
收藏
页码:921 / 949
页数:29
相关论文
共 50 条
  • [21] Near-Optimal Mean Value Estimates for Multidimensional Weyl Sums
    Parsell, Scott T.
    Prendiville, Sean M.
    Wooley, Trevor D.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (06) : 1962 - 2024
  • [22] MEAN-VALUE ESTIMATES FOR EXPONENTIAL-SUMS .2.
    JUTILA, M
    ARCHIV DER MATHEMATIK, 1990, 55 (03) : 267 - 274
  • [23] Near-Optimal Mean Value Estimates for Multidimensional Weyl Sums
    Scott T. Parsell
    Sean M. Prendiville
    Trevor D. Wooley
    Geometric and Functional Analysis, 2013, 23 : 1962 - 2024
  • [24] A HYBRID MEAN VALUE INVOLVING A NEW GAUSS SUMS AND DEDEKIND SUMS
    Li, X. X.
    Zhang, W. P.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06): : 1957 - 1968
  • [25] MEAN VALUE ESTIMATES ON A CLASS OF ARITHMETIC FUNCTION (Ⅱ)
    蔡天新
    Science Bulletin, 1988, (07) : 615 - 616
  • [26] Weyl sums, mean value estimates, and Waring's problem with friable numbers
    Drappeau, Sary
    Shao, Xuancheng
    ACTA ARITHMETICA, 2016, 176 (03) : 249 - 299
  • [27] Maximal function estimates for the parabolic mean value kernel
    Aimar, Hugo
    Gomez, Ivana
    Iaffei, Bibiana
    REVISTA MATEMATICA COMPLUTENSE, 2008, 21 (02): : 519 - 527
  • [28] A hybrid mean value involving Cochrane sums and a new sum analogous to Kloosterman sums*
    Zhang, Wenpeng
    LITHUANIAN MATHEMATICAL JOURNAL, 2016, 56 (01) : 127 - 132
  • [29] A hybrid mean value involving Cochrane sums and a new sum analogous to Kloosterman sums*
    Wenpeng Zhang
    Lithuanian Mathematical Journal, 2016, 56 : 127 - 132
  • [30] A hybrid mean value involving a new sum and Kloosterman sums
    Xiaohan Wang
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014