DIFFERENTIAL BUNDLES IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

被引:0
|
作者
Cruttwell, G. S. H. [1 ]
Lemay, Jean-Simon Pacaud
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
tangent categories; differential bundles; modules;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explain how the abstract notion of a differential bundle in a tangent category provides a new way of thinking about the category of modules over a commutative ring and its opposite category. MacAdam previously showed that differential bundles in the tangent category of smooth manifolds are precisely smooth vector bundles. Here we provide characterizations of differential bundles in the tangent categories of commutative rings and (affine) schemes. For commutative rings, the category of differential bundles over a commutative ring is equivalent to the category of modules over that ring. For affine schemes, the category of differential bundles over the Spec of a commutative ring is equivalent to the opposite category of modules over said ring. Finally, for schemes, the category of differential bundles over a scheme is equivalent to the opposite category of quasi-coherent sheaves of modules over that scheme.
引用
收藏
页数:45
相关论文
共 50 条
  • [41] Geometric algebra and algebraic geometry of loop and Potts models
    Boehm, Janko
    Jacobsen, Jesper Lykke
    Jiang, Yunfeng
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [42] Geometric algebra and algebraic geometry of loop and Potts models
    Janko Böhm
    Jesper Lykke Jacobsen
    Yunfeng Jiang
    Yang Zhang
    Journal of High Energy Physics, 2022
  • [43] Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations
    Elias Zafiris
    International Journal of Theoretical Physics, 2007, 46 : 319 - 382
  • [44] Computer algebra and algebraic. Geometry - Achievements and perspectives
    Greuel, GM
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (03) : 253 - 289
  • [45] Quantum observables algebras and abstract differential geometry: The topos-theoretic dynamics of diagrams of commutative algebraic localizations
    Zafiris, Elias
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (02) : 319 - 382
  • [46] Algebraic geometry of Abel differential equation
    Sh. Giat
    Y. Shelah
    C. Shikhelman
    Y. Yomdin
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 193 - 210
  • [47] Differential and algebraic geometry of multilayer perceptrons
    Amari, S
    Ozeki, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (01): : 31 - 38
  • [48] Differential and algebraic geometry of multilayer perceptrons
    Amarj, Shun-Ichi
    Ozeki, Tomoko
    2001, IEICE of Japan, Tokyo, Japan (E84-A)
  • [49] Differential Forms in Computational Algebraic Geometry
    Buergisser, Peter
    Scheiblechner, Peter
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 61 - 68
  • [50] BERTINI THEOREMS FOR DIFFERENTIAL ALGEBRAIC GEOMETRY
    Freitag, James
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (01) : 375 - 390