DIFFERENTIAL BUNDLES IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

被引:0
|
作者
Cruttwell, G. S. H. [1 ]
Lemay, Jean-Simon Pacaud
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
tangent categories; differential bundles; modules;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explain how the abstract notion of a differential bundle in a tangent category provides a new way of thinking about the category of modules over a commutative ring and its opposite category. MacAdam previously showed that differential bundles in the tangent category of smooth manifolds are precisely smooth vector bundles. Here we provide characterizations of differential bundles in the tangent categories of commutative rings and (affine) schemes. For commutative rings, the category of differential bundles over a commutative ring is equivalent to the category of modules over that ring. For affine schemes, the category of differential bundles over the Spec of a commutative ring is equivalent to the opposite category of modules over said ring. Finally, for schemes, the category of differential bundles over a scheme is equivalent to the opposite category of quasi-coherent sheaves of modules over that scheme.
引用
收藏
页数:45
相关论文
共 50 条