Energy and Emissions of Machine Learning on Smartphones vs. the Cloud

被引:2
|
作者
Patterson, David [1 ,2 ]
Gilbert, Jeffrey M. [3 ]
Gruteser, Marco [1 ]
Robles, Efren [4 ]
Sekar, Krishna [1 ]
Wei, Yong [1 ]
Zhu, Tenghui [1 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Google, Cambridge, MA USA
[4] Google, Tech Program Management AI ML HW, Mountain View, CA USA
关键词
Machine learning;
D O I
10.1145/3624719
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A Google case study finds ML training in the cloud can reduce CO2e emissions up to 100×. © 2024 Association for Computing Machinery. All rights reserved.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 50 条
  • [31] Smartwatches vs. Smartphones: Notification engagement while driving
    Giang W.C.W.
    Winnie Chen H.-Y.
    Donmez B.
    Giang, Wayne C.W., 2017, IGI Global (09) : 39 - 57
  • [32] Edge vs. Cloud computing
    Mohr, Marie Platenius
    ABB Review, 2022, (03): : 74 - 75
  • [33] Downscaling Building Energy Consumption Carbon Emissions by Machine Learning
    Zhao, Zhuoqun
    Yang, Xuchao
    Yan, Han
    Huang, Yiyi
    Zhang, Guoqin
    Lin, Tao
    Ye, Hong
    REMOTE SENSING, 2021, 13 (21)
  • [34] Dead-band vs. machine-learning control systems: Analysis of control benefits and energy efficiency
    Ahn, Jonghoon
    Cho, Soolyeon
    JOURNAL OF BUILDING ENGINEERING, 2017, 12 : 17 - 25
  • [35] SoK: Machine vs. machine - A systematic classification of automated machine learning-based CAPTCHA solvers
    Dionysiou, Antreas
    Athanasopoulos, Elias
    COMPUTERS & SECURITY, 2020, 97
  • [36] Deep Learning vs. Machine Learning for Intrusion Detection in Computer Networks: A Comparative Study
    Ali, Md Liakat
    Thakur, Kutub
    Schmeelk, Suzanna
    Debello, Joan
    Dragos, Denise
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [37] Relational learning vs. propositionalization - Investigations in inductive logic programming and propositional machine learning
    Kramer, S
    AI COMMUNICATIONS, 2000, 13 (04) : 275 - 276
  • [38] Learning Entropy: On Shannon vs. Machine-Learning-Based Information in Time Series
    Bukovsky, Ivo
    Budik, Ondrej
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022 WORKSHOPS, 2022, 1633 : 402 - 415
  • [39] Deep Learning Vs. Machine Learning in Predicting the Future Trend of Stock Market Prices
    Ghasemieh, Alireza
    Kashef, Rasha
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 3429 - 3435
  • [40] Available energy vs. "energy"
    Pulsifer, HB
    SCIENCE, 1916, 44 : 134 - 135