Instance Segmentation of Underwater Images by Using Deep Learning

被引:0
|
作者
Chen, Jianfeng [1 ]
Zhu, Shidong [2 ]
Luo, Weilin [2 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361102, Peoples R China
[2] Fuzhou Univ, Coll Mech Engn & Automat, Fuzhou 350108, Peoples R China
关键词
underwater image; deep learning; instance segmentation; image enhancement; data augmentation; ADAPTIVE HISTOGRAM EQUALIZATION; CONTRAST; ENHANCEMENT; VEHICLE;
D O I
10.3390/electronics13020274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on deep learning, an underwater image instance segmentation method is proposed. Firstly, in view of the scarcity of underwater related data sets, the size of the data set is expanded by measures including image rotation and flipping, and image generation by a generative adversarial network (GAN). Next, the underwater image data set is finally constructed by manual labeling. Then, in order to solve the problems of color shift, blur and the poor contrast of optical images caused by the complex underwater environment and the attenuation and scattering of light, an underwater image enhancement algorithm is used to first preprocess the data set, and several algorithms are discussed, including multi-scale Retinex (MSRCR) with color recovery, integrated color model (ICM), relative global histogram stretching (RGHS) and unsupervised color correction (UCM), as well as the color shift removal proposed in this work. Specifically, the results indicate that the proposed method can largely increase the segmentation mAP (mean average precision) by 85.7% compared with without the pretreatment method. In addition, based on the characteristics of the constructed underwater dataset, the feature pyramid network (FPN) is improved to some extent, and the preprocessing method is further combined with the improved network for experiments and compared with other neural networks to verify the effectiveness of the proposed method, thus achieving the effect and purpose of improving underwater image instance segmentation and target recognition. The experimental analysis results show that the proposed model can achieve a mAP of 0.245, which is about 1.1 times higher than other target recognition models.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Semantic segmentation of multispectral photoacoustic images using deep learning
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Isensee, Fabian
    Reinke, Annika
    Schreck, Nicholas
    Seitel, Alexander
    Tizabi, Minu D.
    Maier-Hein, Lena
    Groehl, Janek
    PHOTOACOUSTICS, 2022, 26
  • [42] Temporomandibular joint segmentation in MRI images using deep learning
    Li, Mengxun
    Punithakumar, Kumaradevan
    Major, Paul W.
    Le, Lawrence H.
    Nguyen, Kim-Cuong T.
    Pacheco-Pereira, Camila
    Kaipatur, Neelambar R.
    Nebbe, Brian
    Jaremko, Jacob L.
    Almeida, Fabiana T.
    JOURNAL OF DENTISTRY, 2022, 127
  • [43] Segmentation of Nucleus in Histopathological Images Using Deep Learning Architectures
    Ayaz, Ogun
    Usta, Hamdullah
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [44] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379
  • [45] Skin Lesion Segmentation in Clinical Images Using Deep Learning
    Jafari, M. H.
    Karimi, N.
    Nasr-Esfahani, E.
    Samavi, S.
    Soroushmehr, S. M. R.
    Ward, K.
    Najarian, K.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 337 - 342
  • [46] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [47] Breast Cancer Histopathological Images Segmentation Using Deep Learning
    Drioua, Wafaa Rajaa
    Benamrane, Nacera
    Sais, Lakhdar
    SENSORS, 2023, 23 (17)
  • [48] Optic Disc Segmentation in Fundus Images Using Deep Learning
    Kim, Jongwoo
    Tran, Loc
    Chew, Emily Y.
    Antani, Sameer
    Thoma, George R.
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [49] Segmentation of Glomeruli Within Trichrome Images Using Deep Learning
    Korman, Shruti
    Morgan, Laura A.
    Liang, Benjamin
    Cheung, McKenzie G.
    Lin, Christopher Q.
    Mun, Dan
    Nader, Ralph G.
    Belghasem, Mostafa E.
    Henderson, Joel M.
    Francis, Jean M.
    Chitalia, Vipul C.
    Kolachalama, Vijaya B.
    KIDNEY INTERNATIONAL REPORTS, 2019, 4 (07): : 955 - 962
  • [50] Hair Segmentation and Removal in Dermoscopic Images Using Deep Learning
    Talavera-Martinez, Lidia
    Bibiloni, Pedro
    Gonzalez-Hidalgo, Manuel
    IEEE ACCESS, 2021, 9 : 2694 - 2704