Determination of the Live Weight of Farm Animals with Deep Learning and Semantic Segmentation Techniques

被引:5
|
作者
Guvenoglu, Erdal [1 ]
机构
[1] Maltepe Univ, Fac Engn Nat Sci, Dept Comp Engn, TR-34857 Istanbul, Turkiye
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
animal weight estimation; deep learning; image processing; semantic segmentation; stereo vision; ARTIFICIAL NEURAL-NETWORKS; BODY; PREDICTION; VISION; SYSTEM;
D O I
10.3390/app13126944
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In cattle breeding, regularly taking the animals to the scale and recording their weight is important for both the performance of the enterprise and the health of the animals. This process, which must be carried out in businesses, is a difficult task. For this reason, it is often not performed regularly or not performed at all. In this study, we attempted to estimate the weights of cattle by using stereo vision and semantic segmentation methods used in the field of computer vision together. Images of 85 animals were taken from different angles with a stereo setup consisting of two identical cameras. The distances of the animals to the camera plane were calculated by stereo distance calculation, and the areas covered by the animals in the images were determined by semantic segmentation methods. Then, using all these data, different artificial neural network models were trained. As a result of the study, it was revealed that when stereo vision and semantic segmentation methods are used together, live animal weights can be predicted successfully.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Semantic Segmentation of Building Models with Deep Learning in CityGML
    Rashidan, Hanis
    Musliman, Ivin Amri
    Rahman, Alias Abdul
    Coors, Volker
    Buyuksalih, Gurcan
    19TH 3D GEOINFO CONFERENCE 2024, VOL. 48-4, 2024, : 97 - 102
  • [32] A Deep Learning Framework for Semantic Segmentation of Underwater Environments
    Smith, Amos
    Coffelt, Jeremy
    Lingemann, Kai
    2022 OCEANS HAMPTON ROADS, 2022,
  • [33] Bayesian deep learning for semantic segmentation of food images
    Aguilar, Eduardo
    Nagarajan, Bhalaji
    Remeseiro, Beatriz
    Radeva, Petia
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [34] Weakly Supervised Semantic Segmentation Based on Deep Learning
    Liang, Binxiu
    Liu, Yan
    He, Linxi
    Li, Jiangyun
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 455 - 464
  • [35] Multimodal Deep Learning in Semantic Image Segmentation: A Review
    Raman, Vishal
    Kumari, Madhu
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT 2018), 2018, : 7 - 11
  • [36] Supervised semantic segmentation based on deep learning: a survey
    Yuguo Zhou
    Yanbo Ren
    Erya Xu
    Shiliang Liu
    Lijian Zhou
    Multimedia Tools and Applications, 2022, 81 : 29283 - 29304
  • [37] A Weakly Supervised Deep Learning Semantic Segmentation Framework
    Zhang, Jizhi
    Zhang, Guoying
    Wang, Qiangyu
    Bai, Shuang
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), 2017, : 182 - 185
  • [38] Review of Semantic Segmentation by Using Deep learning methods
    Rajeswari, B.
    Ram, J. Mani
    Kumar, D. V. T. Praveen
    Harshith, K. L. V. V.
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 272 - 277
  • [39] Deep Metric Learning for Open World Semantic Segmentation
    Cen, Jun
    Yun, Peng
    Cai, Junhao
    Wang, Michael Yu
    Liu, Ming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15313 - 15322
  • [40] Optimized Deep Learning Model for Fire Semantic Segmentation
    Li, Songbin
    Liu, Peng
    Yan, Qiandong
    Qian, Ruiling
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 4999 - 5013