CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data

被引:22
|
作者
Xu, Jing [1 ,2 ]
Zhang, Aidi [1 ]
Liu, Fang [1 ]
Chen, Liang [1 ]
Zhang, Xiujun [1 ]
机构
[1] Chinese Acad Sci, Key Lab Plant Germplasm Enhancement & Specialty Ag, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type annotation; deep learning; Transformer; scRNA-seq; large-scale dataset; HETEROGENEITY; ATLAS;
D O I
10.1093/bib/bbad195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell omics technologies have made it possible to analyze the individual cells within a biological sample, providing a more detailed understanding of biological systems. Accurately determining the cell type of each cell is a crucial goal in single-cell RNA-seq (scRNA-seq) analysis. Apart from overcoming the batch effects arising from various factors, single-cell annotation methods also face the challenge of effectively processing large-scale datasets. With the availability of an increase in the scRNA-seq datasets, integrating multiple datasets and addressing batch effects originating from diverse sources are also challenges in cell-type annotation. In this work, to overcome the challenges, we developed a supervised method called CIForm based on the Transformer for cell-type annotation of large-scale scRNA-seq data. To assess the effectiveness and robustness of CIForm, we have compared it with some leading tools on benchmark datasets. Through the systematic comparisons under various cell-type annotation scenarios, we exhibit that the effectiveness of CIForm is particularly pronounced in cell-type annotation. The source code and data are available at .
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Allen W. Zhang
    Ciara O’Flanagan
    Elizabeth A. Chavez
    Jamie L. P. Lim
    Nicholas Ceglia
    Andrew McPherson
    Matt Wiens
    Pascale Walters
    Tim Chan
    Brittany Hewitson
    Daniel Lai
    Anja Mottok
    Clementine Sarkozy
    Lauren Chong
    Tomohiro Aoki
    Xuehai Wang
    Andrew P Weng
    Jessica N. McAlpine
    Samuel Aparicio
    Christian Steidl
    Kieran R. Campbell
    Sohrab P. Shah
    Nature Methods, 2019, 16 : 1007 - 1015
  • [22] Current annotation strategies for T cell phenotyping of single-cell RNA-seq data
    Mullan, Kerry A.
    de Vrij, Nicky
    Valkiers, Sebastiaan
    Meysman, Pieter
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [23] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Zhang, Allen W.
    O'Flanagan, Ciara
    Chavez, Elizabeth A.
    Lim, Jamie L. P.
    Ceglia, Nicholas
    McPherson, Andrew
    Wiens, Matt
    Walters, Pascale
    Chan, Tim
    Hewitson, Brittany
    Lai, Daniel
    Mottok, Anja
    Sarkozy, Clementine
    Chong, Lauren
    Aoki, Tomohiro
    Wang, Xuehai
    Weng, Andrew P.
    McAlpine, Jessica N.
    Aparicio, Samuel
    Steidl, Christian
    Campbell, Kieran R.
    Shah, Sohrab P.
    NATURE METHODS, 2019, 16 (10) : 1007 - +
  • [24] scSwin: a supervised cell-type annotation method for single-cell RNA sequencing data using Swin Transformer
    Zhang, Shichen
    Xiang, Yiwen
    PROCEEDINGS OF 2024 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2024, 2024, : 479 - 484
  • [25] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Bo Li
    Joshua Gould
    Yiming Yang
    Siranush Sarkizova
    Marcin Tabaka
    Orr Ashenberg
    Yanay Rosen
    Michal Slyper
    Monika S. Kowalczyk
    Alexandra-Chloé Villani
    Timothy Tickle
    Nir Hacohen
    Orit Rozenblatt-Rosen
    Aviv Regev
    Nature Methods, 2020, 17 : 793 - 798
  • [26] transCAE: Enhancing Cell Type Annotation in Single-cell RNA-seq Data with Transfer Learning and Convolutional Autoencoder
    Liu, Qingchun
    Xu, Yan
    JOURNAL OF MOLECULAR BIOLOGY, 2025, 437 (04)
  • [27] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Li, Bo
    Gould, Joshua
    Yang, Yiming
    Sarkizova, Siranush
    Tabaka, Marcin
    Ashenberg, Orr
    Rosen, Yanay
    Slyper, Michal
    Kowalczyk, Monika S.
    Villani, Alexandra-Chloe
    Tickle, Timothy
    Hacohen, Nir
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    NATURE METHODS, 2020, 17 (08) : 793 - +
  • [28] scTrans: Sparse attention powers fast and accurate cell type annotation in single-cell RNA-seq data
    Zou, Zhiyi
    Liu, Ying
    Bai, Yuting
    Luo, Jiawei
    Zhang, Zhaolei
    PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (04)
  • [29] Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis
    Hou, Wenpin
    Ji, Zhicheng
    NATURE METHODS, 2024, 21 (04) : 1462 - 1465
  • [30] De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments
    Woo, Jun
    Winterhoff, Boris J.
    Starr, Timothy K.
    Aliferis, Constantin
    Wang, Jinhua
    LIFE SCIENCE ALLIANCE, 2019, 2 (04)