Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative

被引:7
|
作者
Yeoh, Pauline Shan Qing [1 ]
Lai, Khin Wee [1 ]
Goh, Siew Li [2 ]
Hasikin, Khairunnisa [1 ]
Wu, Xiang [3 ]
Li, Pei [4 ]
机构
[1] Univ Malaya, Dept Biomed Engn, Kuala Lumpur, Malaysia
[2] Univ Malaya, Fac Med, Kuala Lumpur, Malaysia
[3] Xuzhou Med Univ, Sch Med Informat & Engn, Xuzhou, Peoples R China
[4] Xuzhou Med Univ, Affiliated Hosp, Informat Dept, Xuzhou, Peoples R China
关键词
convolutional neural network; deep learning; disease classification; knee osteoarthritis; magnetic resonance imaging; CARTILAGE; MRI;
D O I
10.3389/fbioe.2023.1164655
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Knee osteoarthritis is one of the most common musculoskeletal diseases and is usually diagnosed with medical imaging techniques. Conventionally, case identification using plain radiography is practiced. However, we acknowledge that knee osteoarthritis is a 3D complexity; hence, magnetic resonance imaging will be the ideal modality to reveal the hidden osteoarthritis features from a three-dimensional view. In this work, the feasibility of well-known convolutional neural network (CNN) structures (ResNet, DenseNet, VGG, and AlexNet) to distinguish knees with and without osteoarthritis (OA) is investigated. Using 3D convolutional layers, we demonstrated the potential of 3D convolutional neural networks of 13 different architectures in knee osteoarthritis diagnosis. We used transfer learning by transforming 2D pre-trained weights into 3D as initial weights for the training of the 3D models. The performance of the models was compared and evaluated based on the performance metrics [balanced accuracy, precision, F1 score, and area under receiver operating characteristic (AUC) curve]. This study suggested that transfer learning indeed enhanced the performance of the models, especially for ResNet and DenseNet models. Transfer learning-based models presented promising results, with ResNet34 achieving the best overall accuracy of 0.875 and an F1 score of 0.871. The results also showed that shallow networks yielded better performance than deeper neural networks, demonstrated by ResNet18, DenseNet121, and VGG11 with AUC values of 0.945, 0.914, and 0.928, respectively. This encourages the application of clinical diagnostic aid for knee osteoarthritis using 3DCNN even in limited hardware conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Automated detection of patellofemoral osteoarthritis from knee lateral view radiographs using deep learning: data from the Multicenter Osteoarthritis Study (MOST)
    Bayramoglu, N.
    Nieminen, M. T.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 (10) : 1432 - 1447
  • [22] THE RELATIONSHIP BETWEEN TOTAL KNEE REPLACEMENT AND 3D MRI KNEE BONE SHAPE: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Barr, A. J.
    Dube, B.
    Hensor, E. M. A.
    Kingsbury, S. R.
    Peat, G.
    Bowes, M. A.
    Sharples, L. D.
    Conaghan, P. G.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : A41 - A41
  • [23] VITAMIN D INTAKE AND MAGNETIC RESONANCE PARAMETERS FOR KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Veronese, N.
    La Tegola, L.
    Crepaldi, G.
    Maggi, S.
    Guglielmi, G.
    OSTEOPOROSIS INTERNATIONAL, 2018, 29 : S230 - S230
  • [24] Vitamin D Intake and Magnetic Resonance Parameters for Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Veronese, Nicola
    La Tegola, Luciana
    Mattera, Maria
    Maggi, Stefania
    Guglielmi, Giuseppe
    CALCIFIED TISSUE INTERNATIONAL, 2018, 103 (05) : 522 - 528
  • [25] Vitamin D Intake and Magnetic Resonance Parameters for Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Nicola Veronese
    Luciana La Tegola
    Maria Mattera
    Stefania Maggi
    Giuseppe Guglielmi
    Calcified Tissue International, 2018, 103 : 522 - 528
  • [26] Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Xu, Chang
    Marchand, Nathalie E.
    Driban, Jeffrey B.
    McAlindon, Timothy
    Eaton, Charles B.
    Lu, Bing
    AMERICAN JOURNAL OF CLINICAL NUTRITION, 2020, 111 (03): : 667 - 676
  • [27] IDENTIFICATION OF CLINICAL PHENOTYPES IN KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Knoop, J.
    van der Leeden, M.
    Thorstensson, C.
    Roorda, L.
    Lems, W. F.
    Knol, D.
    Steultjens, M.
    Dekker, J.
    OSTEOARTHRITIS AND CARTILAGE, 2011, 19 : S130 - S131
  • [28] Peripheral Blood DNA Methylation-based Machine Learning Models for Prediction of Knee Osteoarthritis Progression: Biospecimens and Data from the Osteoarthritis Initiative and Johnston County Osteoarthritis Project
    Dunn, Chris
    Sturdy, Cassandra
    Velasco, Cassandra
    Schlupp, Leoni
    Prinz, Emmaline
    Izda, Vladislav
    Arbeeva, Liubov
    Golightly, Yvonne
    Nelson, Amanda
    Jeffries, Matlock
    ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 2217 - 2219
  • [29] Emergence of Deep Learning in Knee Osteoarthritis Diagnosis
    Yeoh, Pauline Shan Qing
    Lai, Khin Wee
    Goh, Siew Li
    Hasikin, Khairunnisa
    Hum, Yan Chai
    Tee, Yee Kai
    Dhanalakshmi, Samiappan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [30] Association of Knee Injuries With Accelerated Knee Osteoarthritis Progression: Data From the Osteoarthritis Initiative
    Driban, Jeffrey B.
    Eaton, Charles B.
    Lo, Grace H.
    Ward, Robert J.
    Lu, Bing
    McAlindon, Timothy E.
    ARTHRITIS CARE & RESEARCH, 2014, 66 (11) : 1673 - 1679