A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network

被引:7
|
作者
Li, Mingtian [1 ]
Lu, Yu [2 ]
Cao, Shixian [1 ]
Wang, Xinyu [1 ]
Xie, Shanjuan [1 ,3 ]
机构
[1] Hangzhou Normal Univ, Inst Remote Sensing & Earth Sci, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[2] SenseTime Res, Shenzhen 518000, Peoples R China
[3] Hangzhou Normal Univ, Zhejiang Prov Key Lab Urban Wetlands & Reg Change, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image classification; multiscale convolutional neural network; nonlocal attention mechanism; feature fusion; RESIDUAL NETWORK; SELECTION;
D O I
10.3390/s23063190
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, convolution neural networks have been widely used in hyperspectral image classification and have achieved excellent performance. However, the fixed convolution kernel receptive field often leads to incomplete feature extraction, and the high redundancy of spectral information leads to difficulties in spectral feature extraction. To solve these problems, we propose a nonlocal attention mechanism of a 2D-3D hybrid CNN (2-3D-NL CNN), which includes an inception block and a nonlocal attention module. The inception block uses convolution kernels of different sizes to equip the network with multiscale receptive fields to extract the multiscale spatial features of ground objects. The nonlocal attention module enables the network to obtain a more comprehensive receptive field in the spatial and spectral dimensions while suppressing the information redundancy of the spectral dimension, making the extraction of spectral features easier. Experiments on two hyperspectral datasets, Pavia University and Salians, validate the effectiveness of the inception block and the nonlocal attention module. The results show that our model achieves an overall classification accuracy of 99.81% and 99.42% on the two datasets, respectively, which is higher than the accuracy of the existing model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Feature Embedding Network with Multiscale Attention for Hyperspectral Image Classification
    Liu, Yi
    Zhu, Jian
    Feng, Jiajie
    Mu, Caihong
    REMOTE SENSING, 2023, 15 (13)
  • [32] Hyperspectral Image Classification via Multiscale Multiangle Attention Network
    Hu, Jianghong
    Tu, Bing
    Ren, Qi
    Liao, Xiaolong
    Cao, Zhaolou
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [33] Multiscale Densely Connected Attention Network for Hyperspectral Image Classification
    Wang, Xin
    Fan, Yanguo
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 1617 - 1628
  • [34] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)
  • [35] A Lightweight Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4150 - 4163
  • [36] Hyperspectral Image Classification of Brain-Inspired Spiking Neural Network Based on Attention Mechanism
    Liu, Yang
    Cao, Kejing
    Wang, Ruiyi
    Tian, Meng
    Xie, Yi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [37] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [38] A dense convolutional neural network for hyperspectral image classification
    Zhi, Lu
    Yu, Xuchu
    Liu, Bing
    Wei, Xiangpo
    REMOTE SENSING LETTERS, 2019, 10 (01) : 59 - 66
  • [39] Convolutional Neural Network Based on Multiple Attention Mechanisms for Hyperspectral and LiDAR Classification
    Wang, Yingying
    Wang, Kun
    Ding, Zhiming
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 274 - 287
  • [40] Attention-Based Deep Convolutional Capsule Network for Hyperspectral Image Classification
    Zhang, Xiaoxia
    Zhang, Xia
    IEEE ACCESS, 2024, 12 : 56815 - 56823