Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset

被引:1
|
作者
Lyra, Simon [1 ]
Mustafa, Arian [1 ]
Rixen, Joeran [1 ]
Borik, Stefan [2 ]
Lueken, Markus [1 ]
Leonhardt, Steffen [1 ]
机构
[1] Rhein Westfal TH Aachen, Helmholtz Inst Biomed Engn, Med Informat Technol, D-52074 Aachen, Germany
[2] Univ Zilina, Fac Elect Engn & Informat Technol, Dept Electromagnet & Biomed Engn, Zilina 01026, State, Slovakia
关键词
cGAN; deep learning; augmentation; NICU; FUSION;
D O I
10.3390/s23020999
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In today's neonatal intensive care units, monitoring vital signs such as heart rate and respiration is fundamental for neonatal care. However, the attached sensors and electrodes restrict movement and can cause medical-adhesive-related skin injuries due to the immature skin of preterm infants, which may lead to serious complications. Thus, unobtrusive camera-based monitoring techniques in combination with image processing algorithms based on deep learning have the potential to allow cable-free vital signs measurements. Since the accuracy of deep-learning-based methods depends on the amount of training data, proper validation of the algorithms is difficult due to the limited image data of neonates. In order to enlarge such datasets, this study investigates the application of a conditional generative adversarial network for data augmentation by using edge detection frames from neonates to create RGB images. Different edge detection algorithms were used to validate the input images' effect on the adversarial network's generator. The state-of-the-art network architecture Pix2PixHD was adapted, and several hyperparameters were optimized. The quality of the generated RGB images was evaluated using a Mechanical Turk-like multistage survey conducted by 30 volunteers and the FID score. In a fake-only stage, 23% of the images were categorized as real. A direct comparison of generated and real (manually augmented) images revealed that 28% of the fake data were evaluated as more realistic. An FID score of 103.82 was achieved. Therefore, the conducted study shows promising results for the training and application of conditional generative adversarial networks to augment highly limited neonatal image datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Haptic Dataset Augmentation with Subjective QoE Labels using Conditional Generative Adversarial Network
    Wang, Zican
    Xu, Xiao
    Yang, Dong
    Wang, Zhenyu
    Shtaierman, Sarah
    Steinbach, Eckehard
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 5072 - 5078
  • [32] Interpolating Seismic Data With Conditional Generative Adversarial Networks
    Oliveira, Dario A. B.
    Ferreira, Rodrigo S.
    Silva, Reinaldo
    Brazil, Emilio Vital
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1952 - 1956
  • [33] Creation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Riquelme, Jose C.
    Nepomuceno-Chamorro, Isabel
    14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019), 2020, 950 : 231 - 240
  • [34] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [35] Biosignal Data Augmentation Based on Generative Adversarial Networks
    Harada, Shota
    Hayashi, Hideaki
    Uchida, Seiichi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 368 - 371
  • [36] PIXEL LEVEL DATA AUGMENTATION FOR SEMANTIC IMAGE SEGMENTATION USING GENERATIVE ADVERSARIAL NETWORKS
    Liu, Shuangting
    Zhang, Jiaqi
    Chen, Yuxin
    Liu, Yifan
    Qin, Zengchang
    Wan, Tao
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1902 - 1906
  • [37] Experimental Assessment of the Performance of Data Augmentation with Generative Adversarial Networks in the Image Classification Problem
    Karadag, Ozge Oztimur
    Cicek, Ozlem Erdas
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 48 - 51
  • [38] Dual Projection Generative Adversarial Networks for Conditional Image Generation
    Han, Ligong
    Min, Martin Renqiang
    Stathopoulos, Anastasis
    Tian, Yu
    Gao, Ruijiang
    Kadav, Asim
    Metaxas, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14418 - 14427
  • [39] Generative Adversarial Networks (GANs) for Image Augmentation in Farming: A Review
    Rahman, Zahid Ur
    Asaari, Mohd Shahrimie Mohd
    Ibrahim, Haidi
    Abidin, Intan Sorfina Zainal
    Ishak, Mohamad Khairi
    IEEE ACCESS, 2024, 12 : 179912 - 179943
  • [40] SAR image synthesis based on conditional generative adversarial networks
    Wang, Jianyu
    Li, Jingwen
    Sun, Bing
    Zuo, Zhixiong
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 8093 - 8097