Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence

被引:5
|
作者
Nandi, Suvendu [1 ]
Bhaduri, Soumyadeep [2 ]
Das, Debraj [2 ]
Ghosh, Priya [1 ]
Mandal, Mahitosh [1 ]
Mitra, Pralay [3 ]
机构
[1] Indian Inst Technol Kharagpur, Sch Med Sci & Technol, Kharagpur 721302, West Bengal, India
[2] Indian Inst Technol Kharagpur, Ctr Computat & Data Sci, Kharagpur 721302, West Bengal, India
[3] Indian Inst Technol Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, West Bengal, India
关键词
Protein Binding Hotspots; Rational Drug Design; Virtual Screening; QSAR; Artificial Intelligence; Deep Learning; Heat Shock Proteins; MatrixMetalloproteinase; Benzothiazole; MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; IN-SILICO; BENZOTHIAZOLE DERIVATIVES; BIOLOGICAL EVALUATION; HOT-SPOTS; GENERATIVE MODEL; LIGAND DOCKING; DESIGN; INHIBITORS;
D O I
10.1021/acs.molpharmaceut.3c01161
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
引用
收藏
页码:1563 / 1590
页数:28
相关论文
共 50 条
  • [21] Correction to: Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era
    Yankang Jing
    Yuemin Bian
    Ziheng Hu
    Lirong Wang
    Xiang-Qun Xie
    The AAPS Journal, 20
  • [22] New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution
    Kamalov, Firuz
    Calonge, David Santandreu
    Gurrib, Ikhlaas
    SUSTAINABILITY, 2023, 15 (16)
  • [23] Rethinking drug design in the artificial intelligence era
    Petra Schneider
    W. Patrick Walters
    Alleyn T. Plowright
    Norman Sieroka
    Jennifer Listgarten
    Robert A. Goodnow
    Jasmin Fisher
    Johanna M. Jansen
    José S. Duca
    Thomas S. Rush
    Matthias Zentgraf
    John Edward Hill
    Elizabeth Krutoholow
    Matthias Kohler
    Jeff Blaney
    Kimito Funatsu
    Chris Luebkemann
    Gisbert Schneider
    Nature Reviews Drug Discovery, 2020, 19 : 353 - 364
  • [24] Rethinking drug design in the artificial intelligence era
    Schneider, Petra
    Walters, W. Patrick
    Plowright, Alleyn T.
    Sieroka, Norman
    Listgarten, Jennifer
    Goodnow, Robert A., Jr.
    Fisher, Jasmin
    Jansen, Johanna M.
    Duca, Jose S.
    Rush, Thomas S.
    Zentgraf, Matthias
    Hill, John Edward
    Krutoholow, Elizabeth
    Kohler, Matthias
    Blaney, Jeff
    Funatsu, Kimito
    Luebkemann, Chris
    Schneider, Gisbert
    NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (05) : 353 - 364
  • [25] Advancing Drug Discovery via Artificial Intelligence
    Chan, H. C. Stephen
    Shan, Hanbin
    Dahoun, Thamani
    Vogel, Horst
    Yuan, Shuguang
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) : 592 - 604
  • [26] Artificial Intelligence for Drug Discovery: AreWe There Yet?
    Hasselgren, Catrin
    Oprea, Tudor I.
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2024, 64 : 527 - 550
  • [27] Artificial intelligence for natural product drug discovery
    Michael W. Mullowney
    Katherine R. Duncan
    Somayah S. Elsayed
    Neha Garg
    Justin J. J. van der Hooft
    Nathaniel I. Martin
    David Meijer
    Barbara R. Terlouw
    Friederike Biermann
    Kai Blin
    Janani Durairaj
    Marina Gorostiola González
    Eric J. N. Helfrich
    Florian Huber
    Stefan Leopold-Messer
    Kohulan Rajan
    Tristan de Rond
    Jeffrey A. van Santen
    Maria Sorokina
    Marcy J. Balunas
    Mehdi A. Beniddir
    Doris A. van Bergeijk
    Laura M. Carroll
    Chase M. Clark
    Djork-Arné Clevert
    Chris A. Dejong
    Chao Du
    Scarlet Ferrinho
    Francesca Grisoni
    Albert Hofstetter
    Willem Jespers
    Olga V. Kalinina
    Satria A. Kautsar
    Hyunwoo Kim
    Tiago F. Leao
    Joleen Masschelein
    Evan R. Rees
    Raphael Reher
    Daniel Reker
    Philippe Schwaller
    Marwin Segler
    Michael A. Skinnider
    Allison S. Walker
    Egon L. Willighagen
    Barbara Zdrazil
    Nadine Ziemert
    Rebecca J. M. Goss
    Pierre Guyomard
    Andrea Volkamer
    William H. Gerwick
    Nature Reviews Drug Discovery, 2023, 22 : 895 - 916
  • [28] Artificial intelligence in drug discovery: applications and techniques
    Deng, Jianyuan
    Yang, Zhibo
    Ojima, Iwao
    Samaras, Dimitris
    Wang, Fusheng
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [29] Enhancing preclinical drug discovery with artificial intelligence
    Vijayan, R. S. K.
    Kihlberg, Jan
    Cross, Jason B.
    Poongavanam, Vasanthanathan
    DRUG DISCOVERY TODAY, 2022, 27 (04) : 967 - 984
  • [30] Artificial intelligence in drug discovery: A mirage or an oasis?
    Sethi, Aaftaab
    Rathi, Brijesh
    DRUG DISCOVERY TODAY, 2024, 29 (06) : 1 - 3