Investigation of tensile and fatigue properties of an austenitic stainless steel part fabricated by WAAM

被引:7
|
作者
Ayan, Yusuf [1 ,3 ]
Kahraman, Nizamettin [2 ]
机构
[1] Karabuk Univ, Mechatron Engn Dept, Karabuk, Turkiye
[2] Karabuk Univ, Mfg Engn Dept, Karabuk, Turkiye
[3] Demircelik Kampusu, TR-78050 Karabuk, Turkiye
关键词
Fatigue; Stainless steel; Bending fatigue; Additive manufacturing; Tensile strength; MECHANICAL-PROPERTIES; WIRE; ARC; MICROSTRUCTURE; DEPOSITION; PARAMETERS; ALLOY;
D O I
10.1016/j.matchemphys.2024.128937
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Austenitic stainless steels are used in many industrial applications and the use of components produced from this material by the wire arc additive manufacturing (WAAM) method has gained interest. Since damage of metallic parts generally occurs due to fatigue, it is necessary to understand their fatigue properties. This study focused on the determination of tensile and fatigue properties of an austenitic stainless steel structure produced by WAAM. For this purpose, a medium-sized part was fabricated using 308LSi metallic wire and gas metal arc welding (GMAW) technique. Hardness tests and microstructure examinations were also performed on the part. In the tensile tests, it was found that the strength and ductility of the vertical and horizontal samples were different. However, the fatigue test results of horizontal and vertical specimens were very similar. The average fatigue limit was found to be 195 MPa, and the fatigue life of the sample reached 107 without any macro damage. As a result of the hardness tests, the average hardness was calculated as 197 HV0.5. In the microstructure studies, different ferrite formations were observed in the austenite matrix on the bottom, middle and upper zones. The changes in microstructure were mostly attributed to the exposure of multiple layers to different heating and cooling rates during WAAM.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Influence of hydrogen content on the tensile properties and fracture of austenitic stainless steel welds
    Younes, C. M.
    Steele, A. M.
    Nicholson, J. A.
    Barnett, C. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4864 - 4876
  • [22] Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM)
    Ayan, Yusuf
    Kahraman, Nizamettin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 35
  • [23] Fatigue properties of friction welded joints with flash by austenitic stainless steel and various machine part carbon steels
    Masayoshi, Hasegawa
    Ryoma, Kaku
    Welding International, 2015, 29 (01) : 10 - 17
  • [24] Small fatigue cracks in an austenitic stainless steel
    Lindstedt, U
    Karlsson, B
    Nystrom, M
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1998, 21 (01) : 85 - 98
  • [25] Small fatigue cracks in an austenitic stainless steel
    Lindstedt, U.
    Karlsson, B.
    Nystrom, M.
    Fatigue and Fracture of Engineering Materials and Structures, 1998, 21 (01): : 85 - 98
  • [26] ULTRASONIC FATIGUE OF AN AUSTENITIC STAINLESS-STEEL
    HORSEWELL, A
    HANSSON, I
    FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1979, 2 (01): : 97 - 106
  • [27] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    Duraisamy, R.
    Kumar, S. Mohan
    Kannan, A. Rajesh
    Shanmugam, N. Siva
    Sankaranarayanasamy, K.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6844 - 6850
  • [28] Fatigue Behavior of Austenitic Stainless Steel 347 Fabricated via Wire Arc Additive Manufacturing
    R. Duraisamy
    S. Mohan Kumar
    A. Rajesh Kannan
    N. Siva Shanmugam
    K. Sankaranarayanasamy
    Journal of Materials Engineering and Performance, 2021, 30 : 6844 - 6850
  • [29] INVESTIGATION OF HIGH STRENGTH STAINLESS STEEL USING SMALL SPECIMEN TEST TECHNIQUES - TENSILE AND FATIGUE PROPERTIES
    Prochazka, Radek
    Dzugan, Jan
    Konopik, Pavel
    Rund, Martin
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN (M2D2017), 2017, : 343 - 354
  • [30] Investigation of Tensile and Impact Properties Associated with Microstructures of a Cast Austenitic High-Manganese Steel and CF3 Austenitic Stainless Steel for Cryogenic Application
    Lee, In-Sung
    Kim, Soon-Tae
    INTERNATIONAL JOURNAL OF METALCASTING, 2025,