Graph Context Target Attention Graph Neural Network for Session-based Recommendation

被引:1
|
作者
Chen, Jiale [1 ]
Xing, Xing [1 ]
Niu, Yong [1 ]
Zhang, Xuanming [1 ]
Jia, Zhichun [1 ]
机构
[1] Bohai Univ, Coll Informat Sci & Technol, Jinzhou 121013, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Session-based recommendation; Graph Neural Network; Graph Context; Target Attention;
D O I
10.1109/DDCLS58216.2023.10166209
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session-based recommendation is nowadays increasingly popular in e-commerce, aiming at predicting the next action of a user under anonymous sessions. Previous research methods on session recommendation model the temporal information inherent in a session as a sequence or graph, however, they disregard the session's graph context information, as well as the relationship between the user and the target object, which affects the accuracy of the recommendation. To obtain the rich graph context information in session recommendation and the intrinsic connection between target items and users, we propose a graph context target attention graph neural network for session-based recommendation, which uses a self-attentive network and graph neural network to extract the item embedding of graph context information; the target attention then adaptively stimulates various user interests. Experimental results on two real-world datasets demonstrate that our proposed model outperforms other comparison algorithms on the evaluation metrics of Recall@20 and MRR@20 in session-based recommendation.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [41] High-order attentive graph neural network for session-based recommendation
    Sang, Sheng
    Liu, Nan
    Li, Wenxuan
    Zhang, Zhijun
    Qin, Qianqian
    Yuan, Weihua
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16975 - 16989
  • [42] GAG: Global Attributed Graph Neural Network for Streaming Session-based Recommendation
    Qiu, Ruihong
    Yin, Hongzhi
    Huang, Zi
    Chen, Tong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 669 - 678
  • [43] GNNRec: gated graph neural network for session-based social recommendation model
    Chun Liu
    Yuxiang Li
    Hong Lin
    Chaojie Zhang
    Journal of Intelligent Information Systems, 2023, 60 : 137 - 156
  • [44] Intention-aware denoising graph neural network for session-based recommendation
    Shanshan Hua
    Mingxin Gan
    Applied Intelligence, 2023, 53 : 23097 - 23112
  • [45] Enhanced Graph Neural Network for Session-Based Recommendation with Static and Dynamic Information
    Chao, Yongxin
    Zheng, Kai
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2024 WORKSHOPS, RAFDA AND IWTA, 2024, 14658 : 70 - 81
  • [46] Hybrid-Order Gated Graph Neural Network for Session-Based Recommendation
    Chen, Yan-Hui
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1458 - 1467
  • [47] GNNRec: gated graph neural network for session-based social recommendation model
    Liu, Chun
    Li, Yuxiang
    Lin, Hong
    Zhang, Chaojie
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 60 (01) : 137 - 156
  • [48] SR-HetGNN: session-based recommendation with heterogeneous graph neural network
    Jinpeng Chen
    Haiyang Li
    Xudong Zhang
    Fan Zhang
    Senzhang Wang
    Kaimin Wei
    Jiaqi Ji
    Knowledge and Information Systems, 2024, 66 : 1111 - 1134
  • [49] High-order attentive graph neural network for session-based recommendation
    Sheng Sang
    Nan Liu
    Wenxuan Li
    Zhijun Zhang
    Qianqian Qin
    Weihua Yuan
    Applied Intelligence, 2022, 52 : 16975 - 16989
  • [50] Intention-aware denoising graph neural network for session-based recommendation
    Hua, Shanshan
    Gan, Mingxin
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23097 - 23112