Convergence analysis of the nontrivial stationary solution of the memristor-based neural networks with reaction-diffusion terms

被引:0
|
作者
Wang, Helin [1 ]
Jiang, Xinrui [1 ]
Qin, Sitian [1 ]
Zhang, Wei [2 ]
Feng, Yuming [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Comp Sci & Engn, Chongqing, Peoples R China
关键词
memristor-based; reaction-diffusion terms; nontrivial solution; Leary-Schauder alternative theorem; TO-STATE STABILITY;
D O I
10.1109/ICACI58115.2023.10146155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the convergence and existence problem for the nontivial stationary solution of a memristor-based neural network with reaction-diffusion(MNNs). We address the existence of the nontrivial stationary solution by investigating a compact operator whose fixed point is exactly the stationary solution through the Leary-Schauder theorem. Then, under some mild conditions, a lyapounov function is proposed to prove the convergence of the stationary solution. Numerial examples are provided to support the effectiveness of the conclusions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dynamical behaviors of coupled neural networks with reaction-diffusion terms: analysis, control and applications
    Wang, Jin-Liang
    Huang, Tingwen
    Liang, Jinling
    Tang, Yang
    Hu, Jun
    NEUROCOMPUTING, 2017, 227 : 1 - 2
  • [22] Memristor-Based Binarized Spiking Neural Networks
    Eshraghian, Jason K.
    Wang, Xinxin
    Lu, Wei D.
    IEEE NANOTECHNOLOGY MAGAZINE, 2022, 16 (02) : 14 - 23
  • [23] Offline Training for Memristor-based Neural Networks
    Boquet, Guillem
    Macias, Edwar
    Morell, Antoni
    Serrano, Javier
    Miranda, Enrique
    Lopez Vicario, Jose
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1547 - 1551
  • [24] Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms
    Zhao, Hongyong
    Mao, Zisen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (05) : 1603 - 1617
  • [25] Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms
    Shi, Guodong
    Ma, Qian
    NEUROCOMPUTING, 2012, 77 (01) : 275 - 280
  • [26] Turing instability and pattern formation of neural networks with reaction-diffusion terms
    Zhao, Hongyong
    Huang, Xuanxuan
    Zhang, Xuebing
    NONLINEAR DYNAMICS, 2014, 76 (01) : 115 - 124
  • [27] Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms
    Sheng, Li
    Yang, Huizhong
    Lou, Xuyang
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 930 - 939
  • [28] Impulsive control for the synchronization of coupled neural networks with reaction-diffusion terms
    Wei, Pu-Chong
    Wang, Jin-Liang
    Huang, Yan-Li
    Xu, Bei-Bei
    Ren, Shun-Yan
    NEUROCOMPUTING, 2016, 207 : 539 - 547
  • [29] Impulsive Control and Synchronization for Delayed Neural Networks With Reaction-Diffusion Terms
    Hu, Cheng
    Jiang, Haijun
    Teng, Zhidong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01): : 67 - 81
  • [30] Synchronization of Coupled Neural Networks With Reaction-Diffusion Terms and Switching Topology
    Xu, Bei-Bei
    Huang, Yan-Li
    Wang, Jin-Liang
    Wei, Pu-Chong
    Ren, Shun-Yan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 5927 - 5932