共 50 条
Symmetric finite representability of LP-spaces in rearrangement invariant spaces on [0,1]
被引:0
|作者:
Astashkin, Sergey V.
[1
,2
]
Curbera, Guillermo P.
[3
,4
]
机构:
[1] Samara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Bahcesehir Univ, Dept Math, TR-34353 Istanbul, Turkiye
[3] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
[4] Univ Seville, IMUS, Calle Tarfia S-N, Seville 41012, Spain
来源:
关键词:
L-p;
Finite representability;
Banach lattice;
Rearrangement invariant space;
Dilation operator;
Shift operator;
Boyd indices;
Orlicz space;
Lorentz space;
BANACH;
INDEXES;
D O I:
10.1007/s13163-023-00464-3
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all p ? [1, 8] such that L-p is finitely represented in X in such a way that the unit basis vectors of L-p (c(0) if p = oo) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on (0, 8).
引用
收藏
页码:413 / 434
页数:22
相关论文