Machine learning-based survival prediction nomogram for postoperative parotid mucoepidermoid carcinoma

被引:2
|
作者
Huang, Zongwei [1 ]
Chen, Zihan [1 ]
Li, Ying [1 ]
Lin, Ting [1 ]
Cai, Sunqin [1 ]
Wu, Wenxi [1 ]
Wu, Lishui [1 ]
Xu, Siqi [1 ]
Lu, Jun [1 ]
Qiu, Sufang [2 ]
机构
[1] Fujian Med Univ, Fujian Canc Hosp, Canc Hosp, Fuzhou, Peoples R China
[2] Fujian Med Univ, Fujian Canc Hosp, Clin Oncol Sch, Radiat Oncol Dept, Fuzhou, Fujian, Peoples R China
关键词
Machine learning; Parotid mucoepidermoid carcinoma; Nomogram; Postoperative radiotherapy; SEER; MAJOR SALIVARY-GLANDS; RADIOTHERAPY; SURGERY;
D O I
10.1038/s41598-024-58329-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parotid mucoepidermoid carcinoma (P-MEC) is a significant histopathological subtype of salivary gland cancer with inherent heterogeneity and complexity. Existing clinical models inadequately offer personalized treatment options for patients. In response, we assessed the efficacy of four machine learning algorithms vis-a-vis traditional analysis in forecasting the overall survival (OS) of P-MEC patients. Using the SEER database, we analyzed data from 882 postoperative P-MEC patients (stages I-IVA). Single-factor Cox regression and four machine learning techniques (random forest, LASSO, XGBoost, best subset regression) were employed for variable selection. The optimal model was derived via stepwise backward regression, Akaike Information Criterion (AIC), and Area Under the Curve (AUC). Bootstrap resampling facilitated internal validation, while prediction accuracy was gauged through C-index, time-dependent ROC curve, and calibration curve. The model's clinical relevance was ascertained using decision curve analysis (DCA). The study found 3-, 5-, and 10-year OS rates of 0.887, 0.841, and 0.753, respectively. XGBoost, BSR, and LASSO stood out in predictive efficacy, identifying seven key prognostic factors including age, pathological grade, T stage, N stage, radiation therapy, chemotherapy, and marital status. A subsequent nomogram revealed a C-index of 0.8499 (3-year), 0.8557 (5-year), and 0.8375 (10-year) and AUC values of 0.8670, 0.8879, and 0.8767, respectively. The model also highlighted the clinical significance of postoperative radiotherapy across varying risk levels. Our prognostic model, grounded in machine learning, surpasses traditional models in prediction and offer superior visualization of variable importance.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Machine learning-based prediction model for postoperative delirium in non-cardiac surgery
    Dong Yun Lee
    Ah Ran Oh
    Jungchan Park
    Seung-Hwa Lee
    Byungjin Choi
    Kwangmo Yang
    Ha Yeon Kim
    Rae Woong Park
    BMC Psychiatry, 23
  • [32] Machine learning-based radiomics for preoperative prediction of microvascular invasion in hepatocellular carcinoma
    Xiong, L.
    Peng, Y.
    Li, Sh
    Tang, X.
    Zhou, J.
    Gong, L.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2023, 21 (03): : 383 - 390
  • [33] Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data
    Byeonggwan Noh
    Young Mok Park
    Yujin Kwon
    Chang In Choi
    Byung Kwan Choi
    Kwang il Seo
    Yo-Han Park
    Kwangho Yang
    Sunju Lee
    Taeyoung Ha
    YunKyong Hyon
    Myunghee Yoon
    BMC Gastroenterology, 22
  • [34] Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data
    Noh, Byeonggwan
    Park, Young Mok
    Kwon, Yujin
    Choi, Chang In
    Choi, Byung Kwan
    Seo, Kwang Il
    Park, Yo-Han
    Yang, Kwangho
    Lee, Sunju
    Ha, Taeyoung
    Hyon, YunKyong
    Yoon, Myunghee
    BMC GASTROENTEROLOGY, 2022, 22 (01)
  • [35] A nomogram to predict postoperative overall and cancer specific survival in patients with primary parotid squamous cell carcinoma: a population based study
    Liu, Xudong
    Xue, Jincai
    Dong, Fang
    Wang, Xingyue
    Tian, Youxin
    Liu, Qinjiang
    Wang, Jun
    Wang, Yunsheng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [36] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [37] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [38] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [39] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [40] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42