Electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species

被引:41
|
作者
Zhang, Zheng [1 ]
Li, Danyang [1 ]
Tu, Yunchuan [2 ]
Deng, Jiao [3 ]
Bi, Huiting [1 ]
Yao, Yongchao [4 ]
Wang, Yan [4 ]
Li, Tingshuai [4 ]
Luo, Yongsong [5 ]
Sun, Shengjun [5 ]
Zheng, Dongdong [5 ]
Carabineiro, Sonia A. C. [6 ]
Chen, Zhou [7 ,8 ]
Zhu, Junjiang [1 ,9 ]
Sun, Xuping [4 ,5 ,10 ]
机构
[1] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finish, Wuhan, Hubei, Peoples R China
[2] Chongqing Univ, Sch Chem & Chem Engn, Chongqing, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I Lab, Vacuum Interconnected Nanotech Workstn Nano X, Suzhou, Jiangsu, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[5] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan, Shandong, Peoples R China
[6] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Chem, LAQV REQUIMTE, P-2829516 Caparica, Portugal
[7] Xiamen Univ, Coll Mat, Xiamen, Fujian, Peoples R China
[8] Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China
[9] Wuhan Text Univ, Coll Chem & Chem Engn, Hubei Key Lab Biomass Fibers & Ecodyeing & Finishi, Wuhan 430200, Hubei, Peoples R China
[10] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
来源
SUSMAT | 2024年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
C-N coupling; CO2; reduction; electrocatalysis; nitrogenous species; reaction mechanism; CARBON-DIOXIDE; ELECTROCHEMICAL SYNTHESIS; CATALYTIC SYNTHESIS; AMMONIA-SYNTHESIS; CARBOXYLIC-ACIDS; NITRITE IONS; REDUCTION; EFFICIENT; NITRATE; UREA;
D O I
10.1002/sus2.193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic synthesis of C-N coupling compounds from CO2 and nitrogenous species not only offers an effective avenue to achieve carbon neutrality and reduce environmental pollution, but also establishes a route to synthesize valuable chemicals, such as urea, amide, and amine. This innovative approach expands the application range and product categories beyond simple carbonaceous species in electrocatalytic CO2 reduction, which is becoming a rapidly advancing field. This review summarizes the research progress in electrocatalytic urea synthesis, using N-2, NO2-, and NO3- as nitrogenous species, and explores emerging trends in the electrosynthesis of amide and amine from CO2 and nitrogen species. Additionally, the future opportunities in this field are highlighted, including electrosynthesis of amino acids and other compounds containing C-N bonds, anodic C-N coupling reactions beyond water oxidation, and the catalytic mechanism of corresponding reactions. This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions, confirming the superiority of this electrochemical method over the traditional techniques.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Catalysts for C-N coupling in urea electrosynthesis under ambient conditions from carbon dioxide and nitrogenous species
    Yang, Chunqi
    Yang, Ziyan
    Zhang, Wenxuan
    Chen, Aiping
    Li, Yuhang
    CHEMICAL COMMUNICATIONS, 2024, 60 (44) : 5666 - 5682
  • [22] Synthesis of High Value-Added Chemicals Via Electrocatalytic C-N Coupling Involving CO2 and Nitrogen-Containing Small Molecules
    Wang, Xihua
    Wang, Yong
    Li, Pengsong
    Zhang, Xiangda
    Liu, Jiyuan
    Hou, Yuqing
    Zhang, Yichao
    Zhu, Qinggong
    Han, Buxing
    CHEMCATCHEM, 2024, 16 (22)
  • [23] Efficient C-N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters
    Chen, Xiangyu
    Lv, Shuning
    Kang, Jianxin
    Wang, Zhongchang
    Guo, Tianqi
    Wang, Yu
    Teobaldi, Gilberto
    Liu, Li-Min
    Guo, Lin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (39)
  • [24] C-N electro-coupling of CO2/bio-derived carbonaceous molecules and nitrogenous small molecules: Mechanism, catalysts, and applications
    Song, Qianqian
    Zhang, Yingbing
    Gu, Lin
    Kuang, Min
    Yang, Jianping
    COORDINATION CHEMISTRY REVIEWS, 2025, 522
  • [25] Revealing electrocatalytic C-N coupling for urea synthesis with metal-free electrocatalyst
    Cao, Yongyong
    Meng, Yuxiao
    An, Runzhi
    Zou, Xuhui
    Huang, Hongjie
    Zhong, Weichan
    Shen, Zhangfeng
    Xia, Qineng
    Li, Xi
    Wang, Yangang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 990 - 999
  • [26] Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: Key C-N coupling intermediates
    Wang, Hua
    Jiang, Yong
    Li, Sijun
    Gou, Fenglin
    Liu, Xiaorui
    Jiang, Yimin
    Luo, Wei
    Shen, Wei
    He, Rongxing
    Li, Ming
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 318
  • [27] Selective Methanol Synthesis from CO2 Hydrogenation over an In2O3/Co/C-N Catalyst
    Fang, Tingfeng
    Liu, Bing
    Lian, Yun
    Zhang, Zehui
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (43) : 19162 - 19167
  • [28] Electrocatalytic construction of the C–N bond from the derivates of CO2 and N2
    Yanmei Huang
    Yuting Wang
    Yongmeng Wu
    Yifu Yu
    Bin Zhang
    Science China(Chemistry), 2022, 65 (02) : 204 - 206
  • [29] Advances in electrocatalytic urea synthesis: Detection methods, C-N coupling mechanisms, and catalyst design
    Cai, Jian
    Wang, Zixuan
    Zheng, Xuan
    Hao, Jiace
    Bao, Kanglin
    Zhou, Ying
    Pan, Xiaodan
    Zhu, Han
    NANO RESEARCH, 2025, 18 (03)
  • [30] 2D Catalysts for Electrocatalytic Nitrate Reduction and C-N Coupling Reactions
    Xi, Zichao
    Hu, Huilin
    Chen, Qiao
    Ning, Minghui
    Wang, Sangni
    Yu, Huimin
    Sun, Yuanmiao
    Wang, Da-Wei
    Jin, Huanyu
    Cheng, Hui-Ming
    ADVANCED FUNCTIONAL MATERIALS, 2025,