The Hansen solubility approach towards green solvent processing: n-channel organic field-effect transistors under ambient conditions

被引:5
|
作者
Deneme, Ibrahim [1 ]
Yildiz, Tevhide Ayca [1 ]
Kayaci, Nilgun [1 ]
Usta, Hakan [1 ]
机构
[1] Abdullah Gul Univ, Dept Nanotechnol Engn, TR-38080 Kayseri, Turkiye
关键词
Enthalpy - Materials handling - Organic semiconductor materials - Solubility - Solvents - Thin films;
D O I
10.1039/d4tc00324a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adoption of green solvents is of utmost importance for the solution-based fabrication of semiconductor thin films and for the commercialization of (opto)electronic devices, especially in response to evolving regulatory mandates for handling organic materials. Despite the increasing interest in this area, the scarcity of green solvent-processed n-channel OFETs, especially functioning under ambient conditions, highlights the need for further research. In this study, we demonstrated the Hansen solubility approach to study the solubility behavior of an ambient-stable n-type semiconductor, 2,2' -(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile (beta,beta'-C-12-TIFDMT), and to analyze potential green solvents for thin-film processing. The Hansen solubility parameters were determined to be delta(D) = 20.8 MPa1/2, delta(P) = 5.8 MPa1/2, and delta(H) = 5.5 MPa1/2 with a radius (R-0) of 8.3 MPa1/2. A green solvent screening analysis based on the minimal distance constraint and quantitative sustainability score identified ethoxybenzene, anisole, 2-methylanisole, and 2-methyltetrahydrofuran as suitable green solvents (R-a's = 5.17-7.93 MPa1/2 < R-0). A strong thermodynamic correlation was identified between the solubility and the semiconductor-solvent distance in the 3D Hansen solubility space, in which the maximum solubility limit could be estimated with the enthalpy of fusion (Delta H-fus) and melting temperature (T-mp) of the semiconductor. To the best of our knowledge, this relationship between the maximum solubility limit and thermal properties has been established for the first time for organic semiconductors. Bottom-gate/top-contact OFETs fabricated by spin-coating the semiconductor green solutions exhibited mu es reaching similar to 0.2 cm(2) V-1 s(-1) (I-on/I-off similar to 10(6)-10(7) and V-on similar to 0-5 V) under ambient conditions. This device performance, to our knowledge, is the highest reported for an ambient-stable green solvent-processed n-channel OFET. Our HSP-based rational approach and unique findings presented in this study can shed critical light on how green solvents can be efficiently incorporated in solution processing in organic (opto)electronics, and whether ambient-stable n-type semiconductors can continue to play an important role in green OFETs.
引用
收藏
页码:3854 / 3864
页数:12
相关论文
共 50 条
  • [31] Thioether- and sulfone-functionalized dibenzopentalenes as n-channel semiconductors for organic field-effect transistors
    Hermann, Mathias
    Wu, Ruihan
    Grenz, David C.
    Kratzert, Daniel
    Li, Hanying
    Esser, Birgit
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (20) : 5420 - 5426
  • [33] DESIGN AND CHARACTERISTICS OF N-CHANNEL INSULATED-GATE FIELD-EFFECT TRANSISTORS
    CRITCHLOW, DL
    DENNARD, RH
    SCHUSTER, SE
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (05) : 430 - 442
  • [34] In Situ Axially Doped n-Channel Silicon Nanowire Field-Effect Transistors
    Ho, Tsung-ta
    Wang, Yanfeng
    Eichfeld, Sarah
    Lew, Kok-Keong
    Liu, Bangzhi
    Mohney, Suzanne E.
    Redwing, Joan M.
    Mayer, Theresa S.
    NANO LETTERS, 2008, 8 (12) : 4359 - 4364
  • [35] SIMULATION OF N-CHANNEL FIELD-EFFECT TRANSISTORS IN CIRCUIT ANALYSIS OF CMOS CIRCUITS
    MERCHANT, K
    NACHRICHTENTECHNISCHE ZEITSCHRIFT, 1975, 28 (04): : 133 - 137
  • [36] Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors
    Ling, Mang-Mang
    Bao, Zhenan
    Erk, Peter
    APPLIED PHYSICS LETTERS, 2006, 89 (16)
  • [37] n-channel AlSb/GaSb modulation-doped field-effect transistors
    Li, X
    Du, Q
    Heroux, JB
    Wang, WI
    SOLID-STATE ELECTRONICS, 1997, 41 (12) : 1853 - 1856
  • [38] Diethynyl naphthalene derivatives with high ionization potentials for p-channel and n-channel organic field-effect transistors
    Yasuda, Takeshi
    Kashiwagi, Kimiaki
    Morizawa, Yoshitomi
    Tsutsui, Tetsuo
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (15) : 4471 - 4475
  • [39] On the Air Stability of n-Channel Organic Field-Effect Transistors: A Theoretical Study of Adiabatic Electron Affinities of Organic Semiconductors
    Chang, Yu-Chang
    Kuo, Ming-Yu
    Chen, Chih-Ping
    Lu, Hsiu-Feng
    Chao, Ito
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (26): : 11595 - 11601
  • [40] Can p-channel tunnel field-effect transistors perform as good as n-channel?
    Verhulst, A. S.
    Verreck, D.
    Pourghaderi, M. A.
    Van de Put, M.
    Soree, B.
    Groeseneken, G.
    Collaert, N.
    Thean, A. V. -Y.
    APPLIED PHYSICS LETTERS, 2014, 105 (04)