The Hansen solubility approach towards green solvent processing: n-channel organic field-effect transistors under ambient conditions

被引:5
|
作者
Deneme, Ibrahim [1 ]
Yildiz, Tevhide Ayca [1 ]
Kayaci, Nilgun [1 ]
Usta, Hakan [1 ]
机构
[1] Abdullah Gul Univ, Dept Nanotechnol Engn, TR-38080 Kayseri, Turkiye
关键词
Enthalpy - Materials handling - Organic semiconductor materials - Solubility - Solvents - Thin films;
D O I
10.1039/d4tc00324a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adoption of green solvents is of utmost importance for the solution-based fabrication of semiconductor thin films and for the commercialization of (opto)electronic devices, especially in response to evolving regulatory mandates for handling organic materials. Despite the increasing interest in this area, the scarcity of green solvent-processed n-channel OFETs, especially functioning under ambient conditions, highlights the need for further research. In this study, we demonstrated the Hansen solubility approach to study the solubility behavior of an ambient-stable n-type semiconductor, 2,2' -(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile (beta,beta'-C-12-TIFDMT), and to analyze potential green solvents for thin-film processing. The Hansen solubility parameters were determined to be delta(D) = 20.8 MPa1/2, delta(P) = 5.8 MPa1/2, and delta(H) = 5.5 MPa1/2 with a radius (R-0) of 8.3 MPa1/2. A green solvent screening analysis based on the minimal distance constraint and quantitative sustainability score identified ethoxybenzene, anisole, 2-methylanisole, and 2-methyltetrahydrofuran as suitable green solvents (R-a's = 5.17-7.93 MPa1/2 < R-0). A strong thermodynamic correlation was identified between the solubility and the semiconductor-solvent distance in the 3D Hansen solubility space, in which the maximum solubility limit could be estimated with the enthalpy of fusion (Delta H-fus) and melting temperature (T-mp) of the semiconductor. To the best of our knowledge, this relationship between the maximum solubility limit and thermal properties has been established for the first time for organic semiconductors. Bottom-gate/top-contact OFETs fabricated by spin-coating the semiconductor green solutions exhibited mu es reaching similar to 0.2 cm(2) V-1 s(-1) (I-on/I-off similar to 10(6)-10(7) and V-on similar to 0-5 V) under ambient conditions. This device performance, to our knowledge, is the highest reported for an ambient-stable green solvent-processed n-channel OFET. Our HSP-based rational approach and unique findings presented in this study can shed critical light on how green solvents can be efficiently incorporated in solution processing in organic (opto)electronics, and whether ambient-stable n-type semiconductors can continue to play an important role in green OFETs.
引用
收藏
页码:3854 / 3864
页数:12
相关论文
共 50 条
  • [1] Organic n-channel materials for field-effect transistors.
    Laquindanum, JG
    Katz, HE
    Dodabalapur, A
    Lovinger, AJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 368 - POLY
  • [2] Nanoscale n-channel and ambipolar organic field-effect transistors
    Jung, TH
    Yoo, B
    Wang, L
    Dodabalapur, A
    Jones, BA
    Facchetti, A
    Wasielewski, MR
    Marks, TJ
    APPLIED PHYSICS LETTERS, 2006, 88 (18)
  • [3] An asymmetric naphthalimide derivative for n-channel organic field-effect transistors
    Wang, Zongrui
    Zhao, Jianfeng
    Dong, Huanli
    Qiu, Ge
    Zhang, Qichun
    Hu, Wenping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) : 26519 - 26524
  • [4] n-Channel organic field-effect transistors based on boron-subphthalocyanine
    Yasuda, Takeshi
    Tsutsui, Tetsuo
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2007, 462 : 3 - 9
  • [5] High Performance and Stable N-Channel Organic Field-Effect Transistors by Patterned Solvent-Vapor Annealing
    Khim, Dongyoon
    Baeg, Kang-Jun
    Kim, Juhwan
    Kang, Minji
    Lee, Seung-Hoon
    Chen, Zhihua
    Facchetti, Antonio
    Kim, Dong-Yu
    Noh, Yong-Young
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 10745 - 10752
  • [6] Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes
    Cheng, Xiaoyang
    Caironi, Mario
    Noh, Yong-Young
    Newman, Christopher
    Wang, Jianpu
    Lee, Mi Jung
    Banger, Kal
    Di Pietro, Riccardo
    Facchetti, Antonio
    Sirringhaus, Henning
    ORGANIC ELECTRONICS, 2012, 13 (02) : 320 - 328
  • [7] Conjugated Polymers of Rylene Diimide and Phenothiazine for n-Channel Organic Field-Effect Transistors
    Zhou, Weiyi
    Wen, Yugeng
    Ma, Lanchao
    Liu, Yunqi
    Zhan, Xiaowei
    MACROMOLECULES, 2012, 45 (10) : 4115 - 4121
  • [8] Depletion-mode n-channel organic field-effect transistors based on NTCDA
    Zhu, M
    Liang, GR
    Cui, TH
    Varahramyan, K
    SOLID-STATE ELECTRONICS, 2003, 47 (10) : 1855 - 1858
  • [9] Tetracyano isoindigo small molecules and their use in n-channel organic field-effect transistors
    Dasari, Raghunath R.
    Dindar, Amir
    Lo, Chi Kin
    Wang, Cheng-Yin
    Quinton, Cassandre
    Singh, Sanjeev
    Barlow, Stephen
    Fuentes-Hernandez, Canek
    Reynolds, John R.
    Kippelen, Bernard
    Marder, Seth R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (36) : 19345 - 19350
  • [10] Stable Solution-Processed Molecular n-Channel Organic Field-Effect Transistors
    Hwang, Do Kyung
    Dasari, Raghunath R.
    Fenoll, Mathieu
    Alain-Rizzo, Valerie
    Dindar, Amir
    Shim, Jae Won
    Deb, Nabankur
    Fuentes-Hernandez, Canek
    Barlow, Stephen
    Bucknall, David G.
    Audebert, Pierre
    Marder, Seth R.
    Kippelen, Bernard
    ADVANCED MATERIALS, 2012, 24 (32) : 4445 - 4450