CCIM-SLR: Incomplete multiview co-clustering by sparse low-rank representation

被引:0
|
作者
Liu, Zhenjiao [1 ,2 ]
Chen, Zhikui [1 ]
Lou, Kai [1 ]
Rajapaksha, Praboda [3 ]
Zhao, Liang [1 ]
Crespi, Noel [2 ]
Huang, Xiaodi [4 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116620, Peoples R China
[2] Inst Polytech Paris, Samovar, Telecom SudParis, F-91120 Palaiseau, France
[3] Aberystwyth Univ, Dept Comp Sci, Aberystwyth SY23 3DB, Ceredigion, Wales
[4] Charles Sturt Univ, Sch Comp Math & Engn, Albury, NSW 2640, Australia
基金
中国国家自然科学基金;
关键词
Incomplete multiview; Co-clustering; Sparse low-rank representation; Shared hidden view;
D O I
10.1007/s11042-023-17928-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering incomplete multiview data in real-world applications has become a topic of recent interest. However, producing clustering results from multiview data with missing views and different degrees of missing data points is a challenging task. To address this issue, we propose a co-clustering method for incomplete multiview data by sparse low-rank representation (CCIM-SLR). The proposed method integrates the global and local structures of incomplete multiview data and effectively captures the correlations between samples in a view, as well as between different views by using sparse low-rank learning. CCIM-SLR can alternate between learning the shared hidden view, visible view, and cluster partitions within a co-learning framework. An iterative algorithm with guaranteed convergence is used to optimize the proposed objective function. Compared with other baseline models, CCIM-SLR achieved the best performance in the comprehensive experiments on the five benchmark datasets, particularly on those with varying degrees of incompleteness.
引用
收藏
页码:61181 / 61211
页数:31
相关论文
共 50 条
  • [1] Low-Rank Tensor Learning for Incomplete Multiview Clustering
    Chen, Jie
    Wang, Zhu
    Mao, Hua
    Peng, Xi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11556 - 11569
  • [2] Multiview Subspace Clustering Using Low-Rank Representation
    Chen, Jie
    Yang, Shengxiang
    Mao, Hua
    Fahy, Conor
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12364 - 12378
  • [3] Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation
    Yang, Wanqi
    Shi, Yinghuan
    Gao, Yang
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (12) : 6276 - 6291
  • [4] Incomplete Multiview Clustering via Low-Rank Tensor Ring Completion
    Yu, Jinshi
    Huang, Haonan
    Duan, Qi
    Wang, Yafei
    Zou, Tao
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [5] Low-Rank Tensor Regularized Views Recovery for Incomplete Multiview Clustering
    Zhang, Chao
    Li, Huaxiong
    Chen, Caihua
    Jia, Xiuyi
    Chen, Chunlin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9312 - 9324
  • [6] Low-Rank Graph Completion-Based Incomplete Multiview Clustering
    Cui, Jinrong
    Fu, Yulu
    Huang, Cheng
    Wen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 8064 - 8074
  • [7] Augmented Sparse Representation for Incomplete Multiview Clustering
    Chen, Jie
    Yang, Shengxiang
    Peng, Xi
    Peng, Dezhong
    Wang, Zhu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4058 - 4071
  • [8] Enhanced Tensor Low-Rank and Sparse Representation Recovery for Incomplete Multi-View Clustering
    Zhang, Chao
    Li, Huaxiong
    Lv, Wei
    Huang, Zizheng
    Gao, Yang
    Chen, Chunlin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11174 - 11182
  • [9] Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering
    Tang, Kewei
    Zhang, Jie
    Su, Zhixun
    Dong, Jiangxin
    NEURAL PROCESSING LETTERS, 2016, 44 (03) : 719 - 733
  • [10] Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering
    Kewei Tang
    Jie Zhang
    Zhixun Su
    Jiangxin Dong
    Neural Processing Letters, 2016, 44 : 719 - 733