A Transfer Learning-Based Deep Convolutional Neural Network for Detection of Fusarium Wilt in Banana Crops

被引:3
|
作者
Yan, Kevin [1 ]
Shisher, Md Kamran Chowdhury [2 ]
Sun, Yin [2 ,3 ]
机构
[1] Auburn High Sch, 1701 E Samford Ave, Auburn, AL 36830 USA
[2] Auburn Univ, Dept Elect & Comp Engn, Broun Hall,341 War Eagle Way, Auburn, AL 36849 USA
[3] Auburn Univ, Dept Elect & Comp Engn, 345 W Magnolia Ave, Auburn, AL 36849 USA
来源
AGRIENGINEERING | 2023年 / 5卷 / 04期
关键词
convolutional neural network; Fusarium wilt; transfer learning; ResNet-50; banana crop; DISEASE;
D O I
10.3390/agriengineering5040146
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
During the 1950s, the Gros Michel species of bananas were nearly wiped out by the incurable Fusarium Wilt, also known as Panama Disease. Originating in Southeast Asia, Fusarium Wilt is a banana pandemic that has been threatening the multi-billion-dollar banana industry worldwide. The disease is caused by a fungus that spreads rapidly throughout the soil and into the roots of banana plants. Currently, the only way to stop the spread of this disease is for farmers to manually inspect and remove infected plants as quickly as possible, which is a time-consuming process. The main purpose of this study is to build a deep Convolutional Neural Network (CNN) using a transfer learning approach to rapidly identify Fusarium wilt infections on banana crop leaves. We chose to use the ResNet50 architecture as the base CNN model for our transfer learning approach owing to its remarkable performance in image classification, which was demonstrated through its victory in the ImageNet competition. After its initial training and fine-tuning on a data set consisting of 600 healthy and diseased images, the CNN model achieved near-perfect accuracy of 0.99 along with a loss of 0.46 and was fine-tuned to adapt the ResNet base model. ResNet50's distinctive residual block structure could be the reason behind these results. To evaluate this CNN model, 500 test images, consisting of 250 diseased and healthy banana leaf images, were classified by the model. The deep CNN model was able to achieve an accuracy of 0.98 and an F-1 score of 0.98 by correctly identifying the class of 492 of the 500 images. These results show that this DCNN model outperforms existing models such as Sangeetha et al., 2023's deep CNN model by at least 0.07 in accuracy and is a viable option for identifying Fusarium Wilt in banana crops.
引用
收藏
页码:2381 / 2394
页数:14
相关论文
共 50 条
  • [21] Sparse Deep Transfer Learning for Convolutional Neural Network
    Liu, Jiaming
    Wang, Yali
    Qiao, Yu
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2245 - 2251
  • [22] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [23] Deep convolutional transfer learning-based structural damage detection with domain adaptation
    Zuoyi Chen
    Chao Wang
    Jun Wu
    Chao Deng
    Yuanhang Wang
    Applied Intelligence, 2023, 53 : 5085 - 5099
  • [24] Deep convolutional transfer learning-based structural damage detection with domain adaptation
    Chen, Zuoyi
    Wang, Chao
    Wu, Jun
    Deng, Chao
    Wang, Yuanhang
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5085 - 5099
  • [25] Transfer learning based deep convolutional neural network model for pavement crack detection from images
    Jana, S.
    Thangam, S.
    Kishore, Anem
    Kumar, Venkata Sai
    Vandana, Saddapalli
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1209 - 1223
  • [26] Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles
    Ha, Jin Gwan
    Moon, Hyeonjoon
    Kwak, Jin Tae
    Hassan, Syed Ibrahim
    Dang, Minh
    Lee, O. New
    Park, Han Yong
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [27] Detection of the separated endodontic instrument on periapical radiographs using a deep learning-based convolutional neural network algorithm
    Ozbay, Yagiz
    Kazangirler, Buse Yaren
    Ozcan, Caner
    Pekince, Adem
    AUSTRALIAN ENDODONTIC JOURNAL, 2024, 50 (01) : 131 - 139
  • [28] Texture Image Recognition Based on Deep Convolutional Neural Network and Transfer Learning
    Wang J.
    Fan Y.
    Li Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 701 - 710
  • [29] TL-CNN-IDS: transfer learning-based intrusion detection system using convolutional neural network
    Fengru Yan
    Guanghua Zhang
    Dongwen Zhang
    Xinghua Sun
    Botao Hou
    Naiwen Yu
    The Journal of Supercomputing, 2023, 79 : 17562 - 17584
  • [30] Plant Taxonomy In Hainan Based On Deep Convolutional Neural Network And Transfer Learning
    Liu, Wei
    Feng, Wenlong
    Huang, Mengxing
    Han, Guilai
    Lin, Jialun
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1462 - 1467