A statistical deformation model-based data augmentation method for volumetric medical image segmentation
被引:18
|
作者:
He, Wenfeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
He, Wenfeng
[1
,2
]
Zhang, Chulong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Zhang, Chulong
[1
]
Dai, Jingjing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Dai, Jingjing
[1
]
Liu, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Liu, Lin
[1
]
Wang, Tangsheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Wang, Tangsheng
[1
]
Liu, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Liu, Xuan
[1
]
Jiang, Yuming
论文数: 0引用数: 0
h-index: 0
机构:
Wake Forest Univ, Bowman Gray Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USAChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Jiang, Yuming
[3
]
Li, Na
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Med Univ, Dept Biomed Engn, Dongguan 523808, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Li, Na
[4
]
Xiong, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Xiong, Jing
[1
]
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Wang, Lei
[1
]
Xie, Yaoqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Xie, Yaoqin
[1
]
Liang, Xiaokun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
Liang, Xiaokun
[1
]
机构:
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[4] Guangdong Med Univ, Dept Biomed Engn, Dongguan 523808, Peoples R China
Medical Image Segmentation;
Data Augmentation;
Deep Learning;
Deformable Image Registration;
DEEP LEARNING FRAMEWORK;
ORGANS;
NETWORK;
RISK;
NET;
D O I:
10.1016/j.media.2023.102984
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
机构:
the College of Electrical and Information Engineering,Hunan University
the National Engineering Research Center of Robot Visual Perception and Control Technologythe College of Electrical and Information Engineering,Hunan University
Wenxuan He
Min Liu
论文数: 0引用数: 0
h-index: 0
机构:
the College of Electrical and Information Engineering,Hunan University
the National Engineering Research Center of Robot Visual Perception and Control Technologythe College of Electrical and Information Engineering,Hunan University
Min Liu
Yi Tang
论文数: 0引用数: 0
h-index: 0
机构:
the College of Electrical and Information Engineering,Hunan University
the National Engineering Research Center of Robot Visual Perception and Control Technologythe College of Electrical and Information Engineering,Hunan University
Yi Tang
Qinghao Liu
论文数: 0引用数: 0
h-index: 0
机构:
the College of Electrical and Information Engineering,Hunan University
the National Engineering Research Center of Robot Visual Perception and Control Technologythe College of Electrical and Information Engineering,Hunan University
Qinghao Liu
Yaonan Wang
论文数: 0引用数: 0
h-index: 0
机构:
the College of Electrical and Information Engineering,Hunan University
the National Engineering Research Center of Robot Visual Perception and Control Technologythe College of Electrical and Information Engineering,Hunan University
机构:
Ft Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USAFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Dong, Chunhua
Zeng, Xiangyan
论文数: 0引用数: 0
h-index: 0
机构:
Ft Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USAFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Zeng, Xiangyan
Lin, Lanfen
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R ChinaFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Lin, Lanfen
Hu, Hongjie
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Med Sch, Sir Run Run Shaw Hosp, Radiol Dept, Hangzhou, Zhejiang, Peoples R ChinaFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Hu, Hongjie
Han, Xianhua
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kyoto, JapanFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Han, Xianhua
Naghedolfeizi, Masoud
论文数: 0引用数: 0
h-index: 0
机构:
Ft Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USAFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Naghedolfeizi, Masoud
Aberra, Dawit
论文数: 0引用数: 0
h-index: 0
机构:
Ft Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USAFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA
Aberra, Dawit
Chen, Yen-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kyoto, JapanFt Valley State Univ, Dept Math & Comp Sci, Ft Valley, GA USA