Simulation of STAT and HP1 interaction by molecular docking

被引:2
|
作者
Xu, Kangxin [1 ]
Li, Jinghong [1 ]
Li, Willis X. [1 ]
机构
[1] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Non-canonical STAT; uSTAT; Heterochromatin; HP1; HADDOCK; WEB SERVER; NUCLEAR IMPORT; HETEROCHROMATIN; CHROMATIN; BINDING; LOCALIZATION; MECHANISMS;
D O I
10.1016/j.cellsig.2023.110925
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Heterochromatin Protein 1 (HP1) is a major component of heterochromatin. Multiple proteins have been shown to interact with HP1 with the HP1-binding motif PxVxL/I, thereby affecting heterochromatin stability. The HP1-interacting proteins include the signal transducer and activator of transcription (STAT) protein, which can be regulated by phosphorylation on a tyrosine around amino acid 700 in the carboxyl terminus. Previous research has shown that unphosphorylated STAT (uSTAT) binds to HP1 via a PxVxI HP1-binding motif and maintains the stability of heterochromatin, while phosphorylated STAT (pSTAT) dissociates from HP1, resulting in hetero-chromatin disruption. To understand the theoretical basis of the biochemical observations, we employed computational modeling to investigate STAT-HP1 binding configurations and the effect of STAT phosphorylation on their interaction. Using STAT3 and HP1 alpha protein structures for molecular docking and thermodynamic calculations, our computations predict that uSTAT homodimers have a higher affinity for HP1 and a lower affinity for DNA than pSTAT homodimers, and that phosphorylation induces a conformational change in STAT, shifting its binding preference from HP1 to DNA. The results of our modeling studies support the idea that phosphorylation drives STAT from HP1-binding to DNA-binding, suggesting a potential role for uSTAT in both maintaining and initiating heterochromatin formation.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] HP1 and the dynamics of heterochromatin maintenance
    Maison, C
    Almouzni, G
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (04) : 296 - 304
  • [32] HP1 and the dynamics of heterochromatin maintenance
    Christèle Maison
    Geneviève Almouzni
    Nature Reviews Molecular Cell Biology, 2004, 5 : 296 - 305
  • [33] CHROMATIN RNA eviction by HP1
    Schuldt, Alison
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (08) : 479 - 479
  • [34] HP1 complexes and heterochromatin assembly
    Kellum, R
    PROTEIN COMPLEXES THAT MODIFY CHROMATIN, 2003, 274 : 53 - 77
  • [35] Mitotic Mysteries: The Case of HP1
    Higgins, Jonathan M. G.
    Prendergast, Lisa
    DEVELOPMENTAL CELL, 2016, 36 (05) : 477 - 478
  • [36] Conformational diversity of human HP1α
    Ukmar-Godec, Tina
    Yu, Taekyung
    de Opakua, Alain Ibanez
    Pantoja, Christian F.
    Munari, Francesca
    Zweckstetter, Markus
    PROTEIN SCIENCE, 2024, 33 (07)
  • [37] Chromosomal Distribution of Heterochromatin Protein 1 (HP1) in Drosophila: a Cytological Map of Euchromatic HP1 Binding Sites
    Laura Fanti
    Maria Berloco
    Lucia Piacentini
    Sergio Pimpinelli
    Genetica, 2003, 117 : 135 - 147
  • [38] Chromosomal distribution of Heterochromatin Protein 1 (HP1) in Drosophila:: a cytological map of euchromatic HP1 binding sites
    Fanti, L
    Berloco, M
    Piacentini, L
    Pimpinelli, S
    GENETICA, 2003, 117 (02) : 135 - 147
  • [39] Heterochromatin formation in mammalian cells: Interaction between histones and HP1 proteins
    Nielsen, AL
    Oulad-Abdelghani, M
    Ortiz, JA
    Remboutsika, E
    Chambon, P
    Losson, R
    MOLECULAR CELL, 2001, 7 (04) : 729 - 739
  • [40] Mutations in the heterochromatin protein 1 (HP1) hinge domain affect HP1 protein interactions and chromosomal distribution
    Badugu, R
    Yoo, Y
    Singh, PB
    Kellum, R
    CHROMOSOMA, 2005, 113 (07) : 370 - 384