Leveraging Supplementary Information for Multi-Modal Fake News Detection

被引:0
|
作者
Ho, Chia-Chun [1 ]
Dai, Bi-Ru [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
fake news detection; social media;
D O I
10.1109/ICT-DM58371.2023.10286911
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When natural disasters such as floods, earthquakes, terrorist attacks, and industrial accidents occur, first responders, news agencies, and victims increasingly use social media platforms as primary communication channels for disseminating reliable situational information to the public. Although social media is a powerful tool for spreading news, it may also facilitate the spread of fake news, which poses a threat to societal security. Traditionally, verification methods require a great deal of human and social resources, and they are not able to keep pace with the rate at which news is disseminated. In order to determine the authenticity of news articles, we propose a multi-modal approach that analyzes different modalities of information. In this paper, we employ an image captioning model to generate textual descriptions of news images, which provides supplementary information for verification. Our experimental evaluations on the real-world dataset have demonstrated that the proposed method achieves higher performance than baseline methods.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 50 条
  • [41] Multi-modal Fake News Detection Use Event-Categorizing Neural Networks
    Zhao, Buze
    Deng, Hai
    Hao, Jie
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 301 - 308
  • [42] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [43] GraMuFeN: graph-based multi-modal fake news detection in social media
    Kananian, Makan
    Badiei, Fatemeh
    Gh. Ghahramani, S. AmirAli
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [44] MCred: multi-modal message credibility for fake news detection using BERT and CNN
    Verma P.K.
    Agrawal P.
    Madaan V.
    Prodan R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (08) : 10617 - 10629
  • [45] Entity-Oriented Multi-Modal Alignment and Fusion Network for Fake News Detection
    Li, Peiguang
    Sun, Xian
    Yu, Hongfeng
    Tian, Yu
    Yao, Fanglong
    Xu, Guangluan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3455 - 3468
  • [46] Positive Unlabeled Fake News Detection via Multi-Modal Masked Transformer Network
    Wang, Jinguang
    Qian, Shengsheng
    Hu, Jun
    Hong, Richang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 234 - 244
  • [47] Utilizing Ensemble Learning for Detecting Multi-Modal Fake News
    Luqman, Muhammad
    Faheem, Muhammad
    Ramay, Waheed Yousuf
    Saeed, Malik Khizar
    Ahmad, Majid Bashir
    IEEE ACCESS, 2024, 12 : 15037 - 15049
  • [48] MUFFLE: Multi-Modal Fake News Influence Estimator on Twitter
    Wu, Cheng-Lin
    Hsieh, Hsun-Ping
    Jiang, Jiawei
    Yang, Yi-Chieh
    Shei, Chris
    Chen, Yu-Wen
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [49] Enhancing Few-Shot Multi-modal Fake News Detection Through Adaptive Fusion
    Ouyang, Qiang
    Lin, Nankai
    Zhou, Yongmei
    Yang, Aimin
    Zhou, Dong
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 432 - 447
  • [50] Multi-modal transformer using two-level visual features for fake news detection
    Wang, Bin
    Feng, Yong
    Xiong, Xian-cai
    Wang, Yong-heng
    Qiang, Bao-hua
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10429 - 10443