Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds

被引:1
|
作者
Pirhadi, Vahid [1 ]
Fasihi-Ramandi, Ghodratallah [2 ]
Azami, Shahroud [2 ]
机构
[1] Univ Kashan, Fac Math, Dept Pure Math, Kashan, Iran
[2] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
Generalized Ricci soliton; Lorentzian Walker manifolds; Strictly Lorentzian Walker manifolds;
D O I
10.1007/s44198-023-00134-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the generalized Ricci soliton equation on the threedimensional Lorentzian Walker manifolds. We prove that every generalized Ricci soliton with C, beta, mu not equal 0 on a three-dimensional Lorentzian Walker manifold is steady. Moreover, non-trivial solutions for strictly Lorentzian Walker manifolds are derived. Finally, we give some conditions on the defining function f under which a generalized Ricci soliton on a three-dimensional Lorentzian Walker manifold to be gradient.
引用
收藏
页码:1409 / 1423
页数:15
相关论文
共 50 条