Synthesis, microstructure and electromagnetic wave absorption properties of high-entropy carbide powders

被引:16
|
作者
Zhang, Jiatai [1 ]
Wang, Weili [1 ]
Zhang, Zhixuan [1 ]
Chen, Jianqi [1 ]
Sun, Xiaoning [1 ]
Sun, Guoxun [1 ]
Liang, Yanjie [1 ]
Han, Guifang [1 ]
Zhang, Weibin [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
关键词
High-entropy ceramics; Transition metal carbides; Electromagnetic wave absorption; Electromagnetic parameters; MICROWAVE-ABSORPTION; HOLLOW SPHERES; CERAMICS; GRAPHENE; COMPOSITES; STABILITY; TI3C2TX; FE; ZN;
D O I
10.1016/j.jallcom.2023.171593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the continuous development of microwave technology, the electromagnetic (EM) environment we face is becoming increasingly complex. EM wave absorbing materials, which convert EM wave energy into other forms of energy such as thermal energy, have attracted much attention in EM shielding technology for reducing and isolating EM interference. Finding absorbing materials with both strong and wideband absorption performance in 2-18 GHz is particularly important. In this paper, (Zr0.2Ti0.2Hf0.2Ta0.2Cr0.2)C, (Zr0.2Ti0.2Hf0.2Ta0.2Ni0.2)C, (Zr0.2Ti0.2Hf0.2Nb0.2Cr0.2)C and (Zr0.2Ti0.2Hf0.2Nb0.2Ni0.2)C high-entropy carbide powders were prepared through calculation and design, and their properties were compared with TaC and NbC. According to the analysis of phase composition, microstructure, and EM wave absorption performance, the prepared high-entropy carbides have formed single-phase solid solutions, and their absorption performance has been improved. It can be noted that (Zr0.2Ti0.2Hf0.2Nb0.2Ni0.2)C has the minimum reflection loss (RL) of -42.61 dB, and it has the maximum effective absorption bandwidth (EAB) of 3.60 GHz at the thickness of 1.00 mm. Through the analysis of EM parameters, it was found that high-entropy carbides with different compositions changed the dielectric loss, magnetic loss, and their coupling effect. This provides important insights for designing absorbing materials with ultra-thin and good conductivity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Facile synthesis of adjustable high-entropy alloy/polypyrrole electromagnetic wave absorber
    Limin Zhang
    Jia Jia
    Hongsheng Liang
    Geng Chen
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 26074 - 26085
  • [22] Facile synthesis of adjustable high-entropy alloy/polypyrrole electromagnetic wave absorber
    Zhang, Limin
    Jia, Jia
    Liang, Hongsheng
    Chen, Geng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (21) : 26074 - 26085
  • [23] Synthesis of superfine high-entropy metal diboride powders
    Liu, Da
    Wen, Tongqi
    Ye, Beilin
    Chu, Yanhui
    SCRIPTA MATERIALIA, 2019, 167 : 110 - 114
  • [24] Microstructure and Properties of FeAlCrNiMox High-Entropy Alloys
    X. C. Li
    D. Dou
    Z. Y. Zheng
    J. C. Li
    Journal of Materials Engineering and Performance, 2016, 25 : 2164 - 2169
  • [25] Synthesis and Electromagnetic Wave Absorption Properties of Beaded Silicon Carbide/ Silica Nanowires
    Zheng H.
    Wu Z.
    Zhang L.
    Wang Q.
    Meng Z.
    Shang K.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (01): : 8 - 14
  • [26] Microstructure and properties of FexCrMnAlCu high-entropy alloy
    Feng, Li
    Yuan, Yudong
    Bian, Chunhua
    Wang, Ning
    Ma, Kai
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (10) : 1245 - 1254
  • [27] Microstructure and the Properties of AlFeCoNiCrSnx High-Entropy Alloys
    Z. Y. Sun
    J. Zhang
    J. B. Zhu
    J. C. Li
    Arabian Journal for Science and Engineering, 2014, 39 : 8247 - 8251
  • [28] Effects of High-Entropy Alloy and Fine WC on Microstructure and Properties of WC/CoCrFeNiTi Cemented Carbide
    Huai, Junning
    Du, Jin
    Sun, Yujing
    Xia, Yan
    Zhang, Peirong
    Su, Guosheng
    Li, Yinling
    Shi, Haichuan
    Huang, Jincheng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [29] Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties
    Cheng, H.
    Wang, H. Y.
    Xie, Y. C.
    Tang, Q. H.
    Dai, P. Q.
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (17) : 2032 - 2039
  • [30] Multifunctional amorphous FeCoNiTixSi high-entropy alloys with excellent electromagnetic-wave absorption performances
    Jia, Lei
    Jiang, Linwen
    Zhou, Haoran
    Yan, Siqin
    Wu, Anhua
    Zhang, Xiaofeng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (33) : 22011 - 22021