Safeguarding FinTech innovations with machine learning: Comparative assessment of various approaches

被引:13
|
作者
Mirza, Nawazish [1 ]
Elhoseny, Mohamed [2 ,3 ]
Umar, Muhammad [4 ]
Metawa, Noura [5 ,6 ]
机构
[1] Excelia Business Sch, La Rochelle, France
[2] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates
[3] Mansoura Univ, Fac Comp & Informat Syst, Mansoura, Egypt
[4] Lebanese Amer Univ, Adnan Kassar Sch Business, Beirut, Lebanon
[5] Univ Sharjah, Coll Business Adm, Sharjah, U Arab Emirates
[6] Mansoura Univ, Fac Commerce, Mansoura, Egypt
关键词
FinTech threat attribution; Machine learning; Sustainability; Deep learning; BANKING SECTOR; INTERMEDIATION;
D O I
10.1016/j.ribaf.2023.102009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Protecting data is paramount to the development of FinTech. Fraudulent activities can exploit weaknesses in FinTech systems, wreaking havoc on both customers and service providers. However, machine-learning approaches have the potential to spot irregularities in FinTech sys-tems, looking for red flags in economic data sets and using such red flags to inform predictive models for the detection of future fraud. We assess anomaly detection techniques, thereby adding to this crucial topic. We apply a variety of techniques to multiple synthetic and real-world da-tabases. Findings corroborate that machine-learning approaches help with fraud detection, although with varying degrees of effectiveness. Our findings demonstrate that competitive advantage is the most crucial component amongst some Fintech-based predictors, while sales volume is diagnosed as having the least effective importance. To ensure the consistency and accuracy of our findings, we choose case studies for evaluating ML-based fraudulent activities based on the availability of properly allowed appropriate.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Analysis on Various Machine Learning based Approaches with a Perspective on the Performance
    Rani, Meesala Shobha
    Sumathy, S.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [22] A COMPARATIVE ANALYSIS OF VARIOUS APPROACHES FOR AUTOMATED ASSESSMENT OF DESCRIPTIVE ANSWERS
    Kaur, Amarjeet
    Sasikumar, M.
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [23] Comparing Machine Learning Approaches for Fall Risk Assessment
    Silva, Joana
    Madureira, Joao
    Tonelo, Claudia
    Baltazar, Daniela
    Silva, Catarina
    Martins, Anabela
    Alcobia, Carlos
    Sousa, Ines
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2017, : 223 - 230
  • [24] Machine Learning Approaches for Quality Assessment of Protein Structures
    Chen, Jiarui
    Siu, Shirley W., I
    BIOMOLECULES, 2020, 10 (04)
  • [25] Druggability Assessment in TRAPP Using Machine Learning Approaches
    Yuan, Jui-Hung
    Han, Sungho Bosco
    Richter, Stefan
    Wade, Rebecca C.
    Kokh, Daria B.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (03) : 1685 - 1699
  • [26] Comparison and assessment of machine learning approaches in manufacturing applications
    K. Ramesh
    M. N. Indrajith
    Y. S. Prasanna
    Sandip S. Deshmukh
    Chandu Parimi
    Tathagata Ray
    Industrial Artificial Intelligence, 3 (1):
  • [27] Performance Assessment of Various Machine Learning Algorithms in Recommendation
    Ranjan, Siddharth
    Pandey, Trilok Nath
    Dash, Bibhuti Bhusan
    Mishra, Manoj Ranjan
    De, Utpal Chandra
    Patra, Sudhansu Shekhar
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 292 - 297
  • [28] Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia
    Farzana, Syeda Zehan
    Paudyal, Dev Raj
    Chadalavada, Sreeni
    Alam, Md Jahangir
    GEOSCIENCES, 2023, 13 (10)
  • [29] Machine Learning Approaches for Protein-Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment
    Liu, Siyu
    Liu, Chuyao
    Deng, Lei
    MOLECULES, 2018, 23 (10):
  • [30] Machine learning approaches for seismic vulnerability assessment of urban buildings: A comparative study with analytic hierarchy process
    Asadollahzadeh, Danesh
    Behnam, Behrouz
    PROGRESS IN DISASTER SCIENCE, 2025, 25