Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling

被引:5
|
作者
Chen, Chunfeng [1 ]
Singh, Ashutosh Kumar [1 ]
Yang, Bin [1 ]
Wang, Haofei [1 ,2 ]
Liu, Wenjie [1 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Menglun, Yunnan 666303, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fungus-growing termites; Odontotermes yunnanensis; Microbial community composition; Extracellular enzyme; Soil microbial respiration; BIOGENIC STRUCTURES; FEEDING TERMITE; RESPONSES; BIOMASS; MANAGEMENT; DEPOSITION; MARKERS; LITTER; FOREST; WATER;
D O I
10.1016/j.geoderma.2023.116368
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Fungus-feeding termites are considered to be ecosystem engineers because of their ability to construct massive and complex mounds with different soil physicochemical and biological properties in tropical ecosystems. However, the impact of the termite nesting process on soil microbial communities and microbial functions related to nutrient cycling is poorly understood. In this study, we investigated termite-induced changes in soil microbial communities and their nutrient cycling functions within termite mounds (i.e. live mounds and abandoned mounds) in the humid tropical region of Southwest China. We found that the live mounds harbour intermediate microbial community richness (i.e. PLFAs, fungi, bacteria, G+, and G-bacteria) between sur-rounding topsoils and deep soils, with the ratio of fungi to bacteria (F:B) in mounds being significantly higher than in surrounding soils. However, the microbial communities gradually transformed to resemble the sur-rounding soils after the mounds were abandoned because of natural weathering and plant invasion. A relatively more uniform distribution of microbial communities was found within live mounds than in abandoned mounds and surrounding soils, suggesting that termites shaped the environment within the mounds, leading to the ho-mogenisation of microbial communities. In addition, the termite-induced changes of soil physicochemical properties (e.g. water content, pH, organic matter, total N and P) were closely linked to microbial communities. We also observed a reduction in microbial processes associated with nutrient cycling, including microbial respiration, and extracellular enzymatic activities, in mounds relative to the surrounding topsoils. These findings have important implications for exploring microbial communities within termite mounds, which is critical to understand the potential role of termites in regulating soil carbon and nitrogen cycling in tropical ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling
    Buchkowski, Robert W.
    Schmitz, Oswald J.
    Bradford, Mark A.
    ECOLOGY, 2015, 96 (04) : 1139 - 1149
  • [22] CARBON AND NITROGEN CYCLING THROUGH SOIL MICROBIAL BIOMASS AT VARIOUS TEMPERATURES
    NICOLARDOT, B
    FAUVET, G
    CHENEBY, D
    SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (02): : 253 - 261
  • [23] Organic nitrogen cycling microbial communities are abundant in a dry Australian agricultural soil
    Phillips, Lori A.
    Schefe, Cassandra R.
    Fridman, Masha
    O'Halloran, Nicholas
    Armstrong, Roger D.
    Mele, Pauline M.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 86 : 201 - 211
  • [24] Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses
    Shu, Xin
    Daniell, Tim J.
    Hallett, Paul D.
    Baggs, Elizabeth M.
    Mitchell, Susan
    Langarica-Fuentes, Adrian
    Griffiths, Bryan S.
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2021, 104
  • [25] Carbon dynamics in termite mounds: The effect of land use on microbial oxalotrophy
    Nel, Teneille
    Clarke, Catherine E.
    Francis, Michele L.
    Babenko, Darya
    Botha, Alf
    Breecker, Daniel O.
    Cowan, Don A.
    Gallagher, Timothy
    Lebre, Pedro
    McAuliffe, Joseph R.
    Reinhardt, Alyssa N.
    Trindade, Marla
    CATENA, 2025, 254
  • [26] Microbial control over carbon cycling in soil
    Schimel, Joshua P.
    Schaeffer, Sean M.
    FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [27] Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil
    Broughton, R. C. I.
    Newsham, K. K.
    Hill, P. W.
    Stott, A.
    Jones, D. L.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 88 : 83 - 89
  • [28] Opposing effects of nitrogen and phosphorus on soil microbial metabolism and the implications for soil carbon storage
    Poeplau, Christopher
    Herrmann, Anke M.
    Katterer, Thomas
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 100 : 83 - 91
  • [29] Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling
    Maria Mooshammer
    Wolfgang Wanek
    Ieda Hämmerle
    Lucia Fuchslueger
    Florian Hofhansl
    Anna Knoltsch
    Jörg Schnecker
    Mounir Takriti
    Margarete Watzka
    Birgit Wild
    Katharina M Keiblinger
    Sophie Zechmeister-Boltenstern
    Andreas Richter
    Nature Communications, 5
  • [30] Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling
    Mooshammer, Maria
    Wanek, Wolfgang
    Haemmerle, Ieda
    Fuchslueger, Lucia
    Hofhansl, Florian
    Knoltsch, Anna
    Schnecker, Joerg
    Takriti, Mounir
    Watzka, Margarete
    Wild, Birgit
    Keiblinger, Katharina M.
    Zechmeister-Boltenstern, Sophie
    Richter, Andreas
    NATURE COMMUNICATIONS, 2014, 5 : 1 - 7