Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches

被引:49
|
作者
Bai, Yu [1 ,2 ]
Zhao, Hui [1 ]
Zhang, Xin [1 ]
Chang, Zheng [1 ,3 ]
Jantti, Riku [2 ]
Yang, Kun [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland
[3] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland
[4] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, England
来源
关键词
Unmanned aerial vehicle (UAV); multi-UAV wireless network; reinforcement learning; UAV-assisted communication network; UAV-assisted mobile computing; ENERGY-EFFICIENT; RESOURCE-ALLOCATION; TRAJECTORY DESIGN; DATA-COLLECTION; POWER TRANSFER; CELLULAR NETWORKS; IOT; TASK; COMMUNICATION; INTERNET;
D O I
10.1109/COMST.2023.3323344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
引用
收藏
页码:3038 / 3067
页数:30
相关论文
共 50 条
  • [31] Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement Learning
    Isufaj, Ralvi
    Omeri, Marsel
    Piera, Miquel Angel
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [32] Multi-UAV Autonomous Path Planning in Reconnaissance Missions Considering Incomplete Information: A Reinforcement Learning Method
    Chen, Yu
    Dong, Qi
    Shang, Xiaozhou
    Wu, Zhenyu
    Wang, Jinyu
    DRONES, 2023, 7 (01)
  • [33] Computation offloading over multi-UAV MEC network: A distributed deep reinforcement learning approach
    Wei, Dawei
    Ma, Jianfeng
    Luo, Linbo
    Wang, Yunbo
    He, Lei
    Li, Xinghua
    COMPUTER NETWORKS, 2021, 199 (199)
  • [34] Age-of-Information based Multi-UAV Trajectories Using Deep Reinforcement Learning
    Kaur, Amanjot
    Jha, Shashi Shekhar
    IETE TECHNICAL REVIEW, 2024, 41 (06) : 659 - 671
  • [35] On Designing Multi-UAV Aided Wireless Powered Dynamic Communication via Hierarchical Deep Reinforcement Learning
    Zhao, Ze Yu
    Che, Yue Ling
    Luo, Sheng
    Luo, Gege
    Wu, Kaishun
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13991 - 14004
  • [36] Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning
    Li, Shaowei
    Jia, Yuhong
    Yang, Fan
    Qin, Qingyang
    Gao, Hui
    Zhou, Yaoming
    IEEE ACCESS, 2022, 10 : 91385 - 91396
  • [37] Multi-UAV Formation Transformation Based on Improved Heuristically-Accelerated Reinforcement Learning
    Xiao, Yanbing
    Zhang, Yingzhou
    Sun, Yuxin
    Qian, Junyan
    2019 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2019, : 341 - 347
  • [38] Multi-UAV Mobile Edge Computing and Path Planning Platform Based on Reinforcement Learning
    Chang, Huan
    Chen, Yicheng
    Zhang, Baochang
    Doermann, David
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (03): : 489 - 498
  • [39] Deep Reinforcement Learning-Based Dual-Timescale Service Caching and Computation Offloading for Multi-UAV Assisted MEC Systems
    Lin, Na
    Han, Xiao
    Hawbani, Ammar
    Sun, Yunhe
    Guan, Yunchong
    Zhao, Liang
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2025, 22 (01): : 605 - 617
  • [40] Autonomous Cooperative Search Model for Multi-UAV With Limited Communication Network
    Fei, Bowen
    Bao, Weidong
    Zhu, Xiaomin
    Liu, Daqian
    Men, Tong
    Xiao, Zhenliang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19) : 19346 - 19361