Aggregating transformers and CNNs for salient object detection in optical remote sensing images

被引:21
|
作者
Bao, Liuxin [1 ]
Zhou, Xiaofei [1 ]
Zheng, Bolun [1 ]
Yin, Haibing [2 ,3 ]
Zhu, Zunjie [2 ,3 ]
Zhang, Jiyong [1 ]
Yan, Chenggang [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
[2] Hangzhou Dianzi Univ, Lishui Inst, Lishui 323000, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformer; CNNs; Feature fusion; Optical RSIs; Salient object detection; ENCODER-DECODER NETWORK; ATTENTION; FEATURES;
D O I
10.1016/j.neucom.2023.126560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salient object detection (SOD) in optical remote sensing images (RSIs) plays a significant role in many areas such as agriculture, environmental protection, and the military. However, since the difference in imaging mode and image complexity between RSIs and natural scene images (NSIs), it is difficult to achieve remarkable results by directly extending the saliency method targeting NSIs to RSIs. Besides, we note that the convolutional neural networks (CNNs) based U-Net cannot effectively acquire the global long-range dependency, and the Transformer doesn't adequately characterize the spatial local details of each patch. Therefore, to conduct salient object detection in RSIs, we propose a novel two-branch architecture based network for Aggregating the Transformers and CNNs, namely ATC-Net, where the local spatial details and the global semantic information are fused into the final high-quality saliency map. Specifically, our saliency model adopts an encoder-decoder architecture including two parallel encoder branches and a decoder. Firstly, the two parallel encoder branches extract global and local features by using Transformer and CNNs, respectively. Then, the decoder employs a series of featureenhanced fusion (FF) modules to aggregate multi-level global and local features by interactive guidance and enhance the fused feature via attention mechanism. Finally, the decoder deploys the read out (RO) module to fuse the aggregated feature of FF module and the low-level CNN feature, steering the feature to focus more on spatial local details. Extensive experiments are performed on two public optical RSIs datasets, and the results show that our saliency model consistently outperforms 30 state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Boundary-Aware Salient Object Detection in Optical Remote-Sensing Images
    Yu, Longxuan
    Zhou, Xiaofei
    Wang, Lingbo
    Zhang, Jiyong
    ELECTRONICS, 2022, 11 (24)
  • [22] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE Transactions on Image Processing, 2021, 30 : 1305 - 1317
  • [23] Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
    Zhang, Qijian
    Cong, Runmin
    Li, Chongyi
    Cheng, Ming-Ming
    Fang, Yuming
    Cao, Xiaochun
    Zhao, Yao
    Kwong, Sam
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1305 - 1317
  • [24] Spatial Attention Feedback Iteration for Lightweight Salient Object Detection in Optical Remote Sensing Images
    Luo, HuiLan
    Wang, JianQin
    Liang, BoCheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 13809 - 13823
  • [25] Semantic-Edge Interactive Network for Salient Object Detection in Optical Remote Sensing Images
    Luo, Huilan
    Liang, Bocheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6980 - 6994
  • [26] GGRNet: Global Graph Reasoning Network for Salient Object Detection in Optical Remote Sensing Images
    Liu, Xuan
    Zhang, Yumo
    Cong, Runmin
    Zhang, Chen
    Yang, Ning
    Zhang, Chunjie
    Zhao, Yao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 584 - 596
  • [27] Salient Object Detection in Optical Remote Sensing Images Based on Global Context Mixed Attention
    Yan, Longquan
    Yan, Ruixiang
    Geng, Guohua
    Zhou, Mingquan
    Chen, Rong
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (07) : 1489 - 1499
  • [28] Progressive Complementation Network With Semantics and Details for Salient Object Detection in Optical Remote Sensing Images
    Zhao, Rundong
    Zheng, Panpan
    Zhang, Cui
    Wang, Liejun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8626 - 8641
  • [29] Alignment Integration Network for Salient Object Detection and Its Application for Optical Remote Sensing Images
    Zhang, Xiaoning
    Yu, Yi
    Wang, Yuqing
    Chen, Xiaolin
    Wang, Chenglong
    SENSORS, 2023, 23 (14)
  • [30] Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60