MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images

被引:35
|
作者
Cui, Fengzhi [1 ,2 ]
Jiang, Jie [1 ,2 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Precis Optomech Technol, Minist Educ, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Multi -task learning; Siamese network; Deep learning; Semantic change detection;
D O I
10.1016/j.jag.2023.103294
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, change detection has been one of the hot research topics within the field of remote sensing. Previous studies have concentrated on binary change detection (BCD), but it doesn't meet the current needs. Therefore, semantic change detection (SCD) is also gradually developing, which focuses on determining the specific changed type while obtaining changed areas. In the paper, we propose a multi-task learning method (MTSCD-Net) for SCD task. The SCD task is decoupled into two related subtasks, semantic segmentation (SS) and BCD, then unifies them under the same framework. Multi-scale features are extracted using the Siamese semantic-aware encoder based on Swin Transformer, and the aggregation module is designed to combine features. Then, the change information extraction module is designed to enhance the capacity to express features by fully integrating the two-level difference features that are generated from fused features. Moreover, in the decoder stage, the spatial attention weight map is obtained using the features of the BCD subtask, which provides location prior information for the features of the SS subtask. It helps fully explore the correlation between the two subtasks. The two loss functions of subtasks are weighted to train MTSCD-Net. The comparative experiments results on two typical SCD datasets confirm the advantage of MTSCD-Net for SCD task. For the SeK index, MTSCD-Net achieves 3.96% and 20.57% on HRSCD and SECOND datasets, respectively. This outperforms other comparative methods such as Bi-SRNet (which achieves 4.86% and 1.47% higher on two datasets, respectively). The same is true for the Score metric. Moreover, the ablation experiment results confirm the effectiveness of key modules.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images
    Chen, Tao
    Lu, Zhiyuan
    Yang, Yue
    Zhang, Yuxiang
    Du, Bo
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2357 - 2369
  • [42] SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
    Wang, Wei
    Kang, Yuxi
    Liu, Guanqun
    Wang, Xin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [43] Spatial Focused Bitemporal Interactive Network for Remote Sensing Image Change Detection
    Sun, Hang
    Yao, Yuan
    Zhang, Lefei
    Ren, Dong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [44] MISGNet: A Multilevel Intertemporal Semantic Guidance Network for Remote Sensing Images Change Detection
    Cui, Binge
    Liu, Chenglong
    Li, Haojie
    Yu, Jianzhi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1827 - 1840
  • [45] Using Adversarial Network for Multiple Change Detection in Bitemporal Remote Sensing Imagery
    Zhao, Wenzhi
    Chen, Xi
    Ge, Xiaoshan
    Chen, Jiage
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [46] HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images
    Han, Chengxi
    Wu, Chen
    Guo, Haonan
    Hu, Meiqi
    Chen, Hongruixuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3867 - 3878
  • [47] A MULTI-TASK SEMANTIC SEGMENTATION NETWORK FOR THREAT DETECTION IN X-RAY SECURITY IMAGES
    Liu, Junhong
    Li, Baoping
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 731 - 735
  • [48] MTN-Net: A Multi-Task Network for Detection and Segmentation of Thyroid Nodules in Ultrasound Images
    Chen, Leyao
    Zheng, Wei
    Hu, Wenxin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 219 - 232
  • [49] ONLINE MULTI-TASK LEARNING FOR SEMANTIC CONCEPT DETECTION IN VIDEO
    Markatopoulou, Foteini
    Mezaris, Vasileios
    Patras, Ioannis
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 186 - 190
  • [50] A Robust CNN Framework for Change Detection Analysis From Bitemporal Remote Sensing Images
    Sravya, N.
    Bhaduka, Khyati
    Lal, Shyam
    Nalini, J.
    Reddy, Chintala Sudhakar
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 12637 - 12648